Том 26. Мечта об идеальной карте. Картография и математика - [46]

Шрифт
Интервал

(1926–1997) из Геологической службы США, изучив различные атласы мира, опубликованные в США, Великобритании, Франции и Германии в XIX веке, определил, что чаще всего в них использовалась проекция Меркатора. Однако похожее исследование, проведенное в XX веке, показало, что начиная с 1940-х годов эта проекция практически перестала использоваться. Ей на смену пришли такие проекции, как гомолосинусоидальная проекция Гуда, тройная проекция Винкеля, проекция Робинсона, Eckert IV, проекция Ван дер Гринтена и другие.

* * *

ПУТЕШЕСТВИЕ ЧАРЛЬЗА ЛИНДБЕРГА

Американский авиатор Чарльз Линдберг (1902–1974) стал известен во всем мире как первый человек, перелетевший в одиночку Атлантический океан. В 1919 году богатый владелец нью-йоркского отеля предложил премию в 25 тысяч долларов пилоту, который первым совершит одиночный беспосадочный перелет из Нью-Йорка в Париж. Линдберг верил, что если у него будет подходящий самолет, он сможет выиграть приз, и убедил нескольких бизнесменов из Сент-Луиса спонсировать предприятие, включавшее постройку особого самолета «Дух Сент-Луиса» под руководством самого Линдберга.

20 мая 1927 года Линдберг отправился в полет с аэродрома на Лонг-Айленде, «взяв с собой четыре сэндвича, две фляжки с водой и 1700 литров бензина. Спустя 33,5 часа и 3610 миль (около 5800 км) он приземлился в Париже на глазах ожидавшей его стотысячной толпы. Линдберг, получивший прозвище Одинокий Орел, стал известен во всем мире. Свой полет он тщательно спланировал с помощью навигационных карт. Вот его слова: «…большую часть времени, когда строился самолет, я занимался навигацией и прокладывал курс будущего полета на картах. После того как я определил курс на картах, выполненных в гномонической проекции и проекции Меркатора, я вновь проверил весь путь между Нью-Йорком и Парижем по навигационным таблицам. Я начертил большой круг, соединявший Нью-Йорк и Париж. Чтобы следовать этим курсом, требовалось менять румб каждые 500 миль».

* * *

Поскольку в проекции Меркатора экваториальные зоны изображаются практически без искажений, она очень удобна для составления карт этих областей. Она использовалась в морских картах, составленных лейтенантом американского флота Мэтью Фонтеем Мори (1806–1873). В этих картах содержалась информация о погоде, ветрах, течениях и другие результаты гидрологических и метеорологических наблюдений, а также были указаны морские пути.

Наконец, укажем, что проекция Меркатора используется при построении карт мира в некоторых современных интернет-проектах, в частности «Картах Google» и Virtual Earth. Пользователь этих интерактивных карт может просматривать увеличенное изображение малых областей, которые отображаются практически без искажений. Причина в том, что проекция Меркатора является конформной, то есть на локальном уровне, для небольших областей, вносимые ею искажения невелики.


Поперечная проекция Меркатора

Если мы повернем цилиндр, на который проецируется сфера, на 90° так, что линией касания будет меридиан, то получим поперечную проекцию Меркатора с центром на этом меридиане. Эта проекция также будет конформной и не будет вносить больших искажений в областях, близких к касательному меридиану. Поперечная проекция очень удобна для изображения участков Земли, протяженных с юга на север, например Американского континента или Индии.

Эту картографическую проекцию впервые описал Ламберт в 1772 году. Позднее, в 1822 году, эллипсоидную разновидность этой проекции изучили Карл Фридрих Гаусс и математик и топограф Луис Крюгер (1857–1923), поэтому она также называется проекцией Гаусса — Крюгера. Она обладает следующими свойствами.

1. Меридианы, параллели и, в общем случае, локсодромы изображаются кривыми линиями.

2. Проекция конформна: она сохраняет углы и формы на локальном уровне.

3. Искажения в областях, близких к центральному меридиану, очень малы (вдоль центрального меридиана искажения отсутствуют) и постепенно растут по мере удаления от него.



Карта Америки, выполненная в поперечной проекции Меркатора. Это изображение привел Ламберт в качестве примера созданной им проекции.


Как следствие, эта проекция идеально подходит для составления карт участков, протяженных с севера на юг, а также для небольших областей — достаточно правильно выбрать центральный меридиан, проходящий через изображаемую территорию. Именно эта проекция использовалась в различных атласах при составлении карт Северной Америки, западной части бывшего СССР, Индии, стран Востока, Юго-Восточной Азии, восточной части Австралии и Африки. Она широко применяется почти всеми европейскими странами. Так как проекция прекрасно подходит для изображения небольших территорий, она легла в основу системы топографических координат, в частности британской системы координат (1919) и американской системы SPCS (1930). В своем окончательном виде, который на сегодняшний день является универсальным, система координат была разработана в 1947 году Картографической службой армии США. Эта система получила название UTM (от англ. Universal Transverse Mercator — универсальная поперечная проекция Меркатора).


Еще от автора Рауль Ибаньес
Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Рекомендуем почитать
Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Сборник задач по математике с решениями для поступающих в вузы

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.