Том 26. Мечта об идеальной карте. Картография и математика - [31]
Стереографическая проекция имеет следующие свойства.
1. Так как она является азимутальной, карта в этой проекции имеет форму круга и охватывает всего одно полушарие. При изображении в этой проекции больших участков земной поверхности искажения слишком велики.
2. Искажение на меридианах и параллелях равно
Следовательно, эта проекция конформна, то есть сохраняет величины углов.
Однако она не сохраняет ни геодезические линии, ни площади, ни расстояния.
3. Так как эта проекция является азимутальной, она сохраняет геодезические линии, проходящие через точку касания сферы и плоскости. Иными словами, если центр проекции совпадает с одним из полюсов, меридианы изображаются прямыми, проходящими через центр карты.
4. Все меридианы и параллели (точнее все окружности сферы, в том числе большие круги) изображаются окружностями на плоскости, за исключением окружностей, проходящих через точку касания — они изображаются прямыми (это особенность отображений, называемых инверсиями, а стереографическая проекция является результатом инверсии).
5. Локсодромы (кривые на поверхности сферы, пересекающие меридианы под постоянным углом) изображаются в виде логарифмических спиралей.
6. Искажение площадей, форм и размеров вблизи точки касания невелико и возрастает по мере удаления от нее. При выходе за границы полушария, где расположена точка касания (то есть при пересечении экватора в полярных версиях проекции), искажения становятся слишком велики.
Локсодрома на земном шаре и на карте, выполненной в стереографической проекции, центр которой совпадает с Северным полюсом.
Далее мы аналогично центральной проекции рассчитаем искажения, возникающие при использовании стереографической проекции. Рассмотрим диск D достаточно малого (бесконечно малого) радиуса r, касающийся сферы в точке А широтой φ.
Примем радиус сферы равным 1, так как речь идет о сферической модели Земли. Посмотрим, как построенный нами диск изменится в стереографической проекции, и определим, какие искажения она вносит.
* * *
СУММА УГЛОВ ТРЕУГОЛЬНИКА
Все мы знаем, что сумма углов произвольного треугольника равна 180° (или π радиан) — половине полного оборота вокруг оси. Этот классический результат евклидовой геометрии упоминается уже в «Началах» (предложение 32 книги I), созданных греческим математиком Евклидом Александрийским (ок. 325 года до н. э. — ок. 265 года до н. э). Доказательство этого утверждения отличается простотой и изяществом. В данном треугольнике АВС через вершину С проводится линия, параллельная АВ, как показано на рисунке. Так как эта прямая параллельна АВ, обе они образуют равные углы с прямой АС (угол α). По этой же причине они образуют равные углы с прямой ВС (угол β). Так как прямые АС и ВС пересекаются, угол γ и противолежащий ему равны как вертикальные. Сумма трех углов при вершине С равна сумме углов треугольника α, β и γ, то есть развернутому углу — 180°.
* * *
Перед построением стереографической проекции диска на следующем рисунке обозначим через ψ угол ONA, равный углу OAN, и, поскольку сумма углов треугольника равна π, имеем:
С другой стороны, расстояние между N и А равно |NA| = 2 cosψ по тригонометрической теореме косинусов (для данного треугольника со сторонами а, b и с и углом α, противолежащим стороне а, выполняется равенство а>2 = Ь>2 + с>2 — 2Ьс·cosα). По определению косинуса имеем, что расстояние между N и А' — стереографической проекцией точки А — равно:
Чтобы лучше понять, как изменяется диск в стереографической проекции, проведем построение в два этапа. На первом этапе диск преобразуется в диск D', лежащий в плоскости, параллельной D. Центром диска будет точка А' — стереографическая проекция точки А (см. следующий рисунок). В силу подобия треугольников (по теореме Фалеса) имеем:
Первый этап построения стереографической проекции.
Второй этап заключается в построении проекции диска D' радиуса r' на плоскость проекции Т. В направлении «запад — восток» диск D' и плоскость Т пересекаются, следовательно, проекция отрезка будет иметь ту же длину, что и сам отрезок. Это означает, что искажение вдоль параллелей равно
так как мы вычислили искажение бесконечно малого отрезка длины r, расположенного вдоль параллели.
Рассмотрим, что произойдет с отрезками, расположенными в направлении «север — юг», и рассчитаем при этом искажение вдоль меридианов (см. следующий рисунок). Сначала заметим, что угол SA'N равен (π/2) — ψ. Если мы будем считать, что |NA'| очень велико по сравнению с r' (изначально мы приняли размеры диска D бесконечно малыми), то можно предположить, что проекционные лучи параллельны. Следовательно, проекцией отрезка А'В' будет отрезок А'С, а отрезок В'С параллелен NA'. Угол А'СВ', равно как и угол А'В'С, равен — (π/2) — ψ. Следовательно, треугольник В'А'С равнобедренный. Как следствие, |А'С| = |А'В'| = r'. Таким образом, искажение вдоль меридианов и параллелей будет одинаковым. Более того, оно будет одинаковым во всех направлениях, а значит, стереографической проекцией D будет диск радиуса:
Это указывает, что стереографическая проекция является изогональной, то есть сохраняет величины углов.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.
Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.