Том 20. Творчество в математике. По каким правилам ведутся игры разума - [26]

Шрифт
Интервал

«О городе Доротее можно повествовать двояко: либо рассказывая о том, что над ее стенами вздымаются четыре башни, а к семи воротам ведут подъемные мосты, переброшенные через ров; четыре канала с водой зеленого цвета пересекают город и делят его на девять кварталов, в каждом из которых находится по триста домов и семьсот дымоходов…»[6]

При описании архитектурных элементов города Кальвино использует конкретные величины: четыре башни, семь ворот, четыре канала с водой зеленого цвета, девять кварталов, 300 домов и 700 дымоходов. Неизбежно возникает желание провести некоторые расчеты. Так, всего в Доротее 9·300 = 2700 домов и 9·700 = 6300 дымоходов, что означает, что во многих домах больше двух дымоходов.

Не будем сосредотачивать внимание на этих вычислениях, а обратимся к топологическому аспекту описания, которое гласит, что «четыре канала с водой зеленого цвета пересекают город и делят его на девять кварталов».

Допустим, что каналы имеют форму прямых линий. Существует множество способов разделить город на девять кварталов четырьмя каналами. Можно проложить каналы так, что город окажется разделенным на одиннадцать кварталов, как показано на следующих рисунках:



Возникает вопрос: каково максимальное число кварталов, на которые можно разделить город прямыми улицами или каналами? Иными словами, каково максимальное число областей, на которое можно разделить часть плоскости отрезками?

Чтобы ответить на этот вопрос, обратим внимание, что одна улица делит город всего на два района, а максимальное число районов образуется тогда, когда новая прямолинейная улица пересекает все существующие районы:



При прокладке первой улицы образуется один новый район, при прокладке второй улицы — два, третьей — три и т. д. Таким образом, при прокладке n-й улицы образуется n новых районов. Следовательно,



Иными словами, максимальное число районов В(n) равно сумме n и числа районов, полученных на предыдущем этапе, В(n — 1):


При подобном расположении улиц город будет выглядеть примерно так:



Образующаяся кривая — так называемая эвольвента В(n) для n —> 

кривая — гипербола, которая описывается уравнением:

х>2  + у>2 + 2ху — 4у = 0.

Если же улицы необязательно должны быть прямыми, то максимально возможное число районов будет равно В(n) = 2n. На следующем рисунке изображен план города, который делится шестью улицами на 64 района:



Порядок среди хаоса: теорема Вариньона

Теорема Вариньона — это знаменитая теорема планиметрии, описывающая удивительный феномен. В классификации Дьёрдя Пойа это задача на доказательство.

Эта теорема иллюстрирует два важных принципа: во-первых, доказательство, которое не объясняет явление, не является достаточным, во-вторых, цель творческого подхода в математике заключается в том, чтобы понять явление, а для этого необходимо всестороннее доказательство. Иными словами, иногда «доказать» не означает «объяснить».

Выберем четыре произвольные точки плоскости Р, Q, R, S и соединим их отрезками, образуя четырехугольник. Обозначим середины его сторон точками А, В, С, D. Соединим эти точки так, чтобы получился второй четырехугольник внутри первого. Замечаете ли вы нечто особенное?



Повторите построение для других исходных точек, и вы увидите то же самое.

Перед нами — необычная ситуация. Кажется, что геометрия не подчиняется здравому смыслу. Какую бы форму ни имел исходный четырехугольник, для него всегда будет выполняться утверждение:

четырехугольник, вершины которого совпадают с серединами сторон произвольного четырехугольника, является параллелограммом.

Мы обнаружили порядок среди хаоса. Первое, что нужно сделать в подобных ситуациях — постараться объяснить увиденное. Быть может, доказательство поможет нам найти такое объяснение, а может быть, и нет. Рассмотрим векторный и алгебраический подход к этой теореме. Нужно доказать, что точки А, В, С и D, которые являются серединами сторон произвольного четырехугольника PQRS, определяют параллелограмм. Иными словами, нужно доказать, что векторы АВ>→ и DC>→ равны, то есть их можно разложить на одинаковые составляющие. Пусть исходные точки имеют следующие координаты: P(p>1, р>2), Q(q>1, q>2), R(r>1, r>2) и S(s>1, s>2). Найдем координаты первого из рассматриваемых векторов и покажем, что они равны координатам второго вектора:


Теорема доказана. Объясняет ли это доказательство суть увиденного нами? Нет. Перед нами пример того, как логика доказывает, но не объясняет. В данном случае логика не объясняет, потому что из доказательства мы не можем понять, почему ситуация складывается именно так, а не иначе. Вернемся в начало доказательства и обратим внимание на часть исходной фигуры:



Возможно, в этом контексте она покажется вам знакомой. Проведем вспомогательную линию — единственно возможную для завершения рисунка:



Результат построения — треугольники APD и QPS. Так как точки А и D — середины сторон PQ и PS соответственно, то отрезок AD параллелен QS, а его длина в два раза меньше длины QS. Последнее утверждение известно как теорема о средней линии — она заслуживает отдельного упоминания, так как не столь очевидна, как может показаться.


Еще от автора Микель Альберти
Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.