Том 20. Творчество в математике. По каким правилам ведутся игры разума - [28]
Портрет Гаусса.
Этот немецкий математик доказал, что правильный 17-угольник можно построить с помощью циркуля и линейки.
Глава 4
Межкультурное и творческое взаимодействие
До сих пор мы говорили о наиболее типичном аспекте математической деятельности — о том, как человек, сталкивающийся с событиями и явлениями, пытается объяснить их с точки зрения математики. Мы не углублялись в культурные и социальные аспекты математики, хотя в первой главе отметили, что именно они играют основную роль в ее развитии.
Математика формируется в рамках определенного социального и культурного контекста, который в значительной степени определяет ее развитие как внутри научной среды, так и вне ее. Следовательно, социокультурные факторы влияют на математическое творчество, так как придают одним задачам большую важность, чем другим, и если в одной культуре определенные задачи считаются очень важными, то в другой культурной среде им не уделяется никакого внимания.
Этноматематика — это раздел науки, изучающий развитие математики в определенных группах культур. Благодаря этноматематике мы знаем, что в разных частях света люди по-разному производят вычисления, по-своему воспринимают геометрические фигуры и используют для решения одних и тех же задач разные алгоритмы. С одной стороны, это доказывает творческую природу каждой культуры, с другой стороны — делает возможным межкультурное взаимодействие.
Далее мы вкратце расскажем о том, как автор этой книги накапливал новые математические знания вне своей научной среды и вне родной ему западной культуры. Надеемся, что читатель снисходительно отнесется к крайне субъективному характеру повествования.
Пока что мы всегда говорили об эвристике в рамках определенной культуры — как в пределах академической среды, так и за ними. Теперь мы выйдем за рамки нашей культурной парадигмы и посмотрим, как математическое творчество соотносится с различными культурными и социальными аспектами, как оно связано с ними.
Мы уже говорили, что первый шаг на пути к математическому творчеству — это начать задавать вопросы о том, что нас окружает. Что может быть лучше, чем выйти из дома и начать наблюдать, изучать новое, испытывать незнакомые ощущения?
Математики нечасто путешествуют. Мы не имеем в виду путешествия, связанные с научной работой, которые проходят в привычном для ученых контексте. Мы говорим о путешествиях с целью узнать что-то новое, познакомиться с новыми людьми, новыми культурами и обычаями, новым образом жизни и образом мыслей. К таким путешествиям не относятся организованные поездки, так как в них туриста окружает значительная часть привычной среды — хотя бы минимальные удобства, транспорт, гид-переводчик и попутчики, принадлежащие к родной культуре.
Погружения в другую культуру выглядят совершенно иначе: в них путешественник покидает привычный культурный контекст. В течение короткого промежутка времени он старается жить максимально похоже на то, как живут местные, вести себя так же, как они, есть ту же еду и в тех же ресторанах и кафе, он поселяется в тех же гостиницах, куда селятся местные жители, когда они отправляются в поездки.
В подобных путешествиях мы понимаем, что обычная жизнь представителей разных культур отличается: в разных странах люди говорят на разных языках, у них разные верования и обряды, социальная и политическая организация, система ценностей, гастрономия, архитектура, искусство, музыка, литература и многое другое, что составляет самобытность страны. Путешественник стремится найти сходства и различия между этой культурой и культурой родной страны. Так он не только близко знакомится с новой страной, но и лучше узнает самого себя и, как следствие, свою культуру.
Кто-нибудь думал о математике во время путешествия? Когда лодка несет нас по водам Ганга, мы смотрим на клубы дыма, поднимающиеся от кремируемых тел, чей прах затем будет развеян по реке. Сидя на песке, мы смотрим на звездообразный силуэт пальмы в лучах закатного солнца, на то, как она колышется на ветру. Сидя на полу храма, мы восхищаемся неизмеримым множеством деталей: вот священник в клубах благовоний освящает подношения, служки в разноцветной одежде, повторяющаяся музыка гамелана, скульптуры внутри храма, декорации из бамбука и сплетенных листьев, корзины с экзотическими фруктами… Может ли кто-нибудь думать о математике, видя вокруг себя все это великолепие?
Это невозможно. Тем не менее, проведя некоторое время в чужой стране, мы привыкаем к экзотике. То, что раньше казалось странным, теперь привычно. И в этот момент мы можем заняться тем же, чем занимались дома. Когда этот первый этап пройден, но поездка еще не закончена, путешественник в свободные минуты может задуматься о чем-то привычном, свойственном его среде.
В эквадорском городе Баньос я впервые в жизни начал разговор о математике, находясь далеко от дома, — я разговорился с немецким туристом, который интересовался теоремами о собственных значениях.
Второй подобный разговор произошел несколько лет спустя, когда я взял с собой в Индонезию тетрадь с заметками и книгу по математике, чтобы подготовить курс лекций. Путешествие обещало быть долгим, и я планировал пробыть на одном месте несколько недель. Музыка и литература помогли мне воссоздать привычное рабочее место, очень похожее на то, что было у меня дома. Сначала это казалось мне странным, но постепенно я привык заниматься математикой в тропиках. Именно тогда мне пришла в голову описанная ниже задача об оптимизации: на мысль о ней меня навели острова Молуккского архипелага, разделенные проливом шириной всего два километра: Тернате, имеющий почти идеально круглую форму, и соседний с ним остров Тидоре.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.