Том 19. Ипотека и уравнения. Математика в экономике - [9]
В США решение провести перепись населения было принято на Конституционном Конвенте в Филадельфии в 1787 году, одновременно с принятием конституции.
Первая перепись состоялась в 1790 году, а затем они повторялись каждые десять лет. При проведении переписи 1890 года стало очевидным, что подсчитывать анкеты и составлять таблицы вручную невозможно — этот метод требовал слишком много времени для анализа данных и не позволял правительству принимать своевременные политические и экономические решения.
Чтобы найти выход из этой ситуации, был проведен конкурс на создание машины, которая позволила бы быстро и эффективно обрабатывать данные переписи.
Первое место заняла электрическая машина инженера Германа Холлерита, работающая на перфокартах: она подсчитывала количество отверстий, которыми обозначались значения статистических переменных, полученные при переписи. Отверстия в картах делал оператор на основе данных, зафиксированных в анкетах.
Для классификации и составления таблиц Холлерит сконструировал другие машины, и благодаря ему все расчеты для переписи 1890 года были проведены за два с половиной года — это на пять лет меньше, чем потребовалось при анализе данных переписи 1880 года. Холлерит создал компанию по производству машин для табулирования, классификации и перфорирования карт, имевшую огромный успех на рынке. В 1914 году компания Холлерита Tabulating Machine Company была преобразована в International Business Machines (IBM).
Слева направо и сверху вниз: Brunsviga (1927), Mercedes Euklid (1935), ANITA (1961) и персональный компьютер IBM 1980 года демонстрируют головокружительные темпы развития вычислительных машин в XX веке.
В период с 1900 по 1935 год на смену арифмометру Brunsviga пришла вычислительная машина Mercedes Euklid, выполнявшая четыре основные арифметические операции с точностью до 16 цифр. В 1960-е появились электромеханические машины и, наконец, электронные машины на полупроводниках — родоначальники современных компьютеров. В эти же годы появились первые языки программирования, а также программы для управления базами данных, например SAP и DB2, предназначенные для работы с огромными объемами данных, что необходимо крупным корпорациям и государственным структурам.
Глава 2. Деньги и инфляция
Деньги — это прежде всего общепринятое средство платежа, используемое при купле-продаже товаров и услуг или финансовых операциях. Они используются как для обмена, так и для измерения стоимости товаров. Следовательно, деньги — это единица измерения ценности вещей, а также платежный инструмент. Физически деньги представляют собой металлические монеты или банковские билеты, но они могут быть и единицей измерения остатка на нашем банковском счете или карте — на ее чипе или магнитной полосе с использованием современных методов шифрования хранится информация о карте и ее держателе.
С течением времени деньги довольно сильно видоизменились. Изначально торговля основывалась на обмене товарами: люди обменивали излишки, накопленные одним сообществом, на излишки, накопленные другим. Вскоре некоторые товары, например скот, стали использоваться при обмене как базовые для оценки стоимости других товаров. Так, например, двадцать амфор оливок по стоимости равнялись одной овце, сто амфор вина — волу. Амфоры емкостью от 25 до 30 литров, наполненные водой, назывались талантами и выступали единицами веса, а позднее так стали называть денежные единицы.
Использование голов скота как платежной единицы привело к тому, что их изображения появились на камнях, глиняных табличках, а позднее — на металлических монетах. Впоследствии монеты стали чеканиться из драгоценных металлов, таким образом, стоимость монеты равнялась стоимости металла, из которого она была отчеканена (такие деньги называются товарными, или натуральными).
Следующим шагом стала чеканка монет из менее ценных металлов, и стоимость металла, из которого изготавливалась монета, была значительно меньше ее номинала. Такие деньги стали называться фидуциарными (от лат. fiducia — «доверие»)[1], или символическими, и этот этап их эволюции завершился с появлением бумажныхденег. Так как деньги чеканились из бронзы, серебра или золота, купцы позднего Средневековья обращались к ювелирам, чтобы те, взвесив наиболее ценные монеты, определили их реальную стоимость. Ювелиры и стали первыми банкирами: они принимали ценности на хранение, выдавая при этом свидетельства-расписки. Вскоре купцы стали считать эти свидетельства удобной и безопасной заменой самих монет.
Позднее на смену распискам пришли банковские билеты, и появились первые банки.
В древности ценность монет зависела от материала, из которого они были отчеканены. На фото — бронзовый римский сестерций.
В банках хранились вклады, за которыми владельцы обращались нечасто. Вскоре ювелиры и банкиры поняли, что достаточно хранить постоянно лишь небольшое количество ликвидных средств своих клиентов, а остальные вклады можно выдавать в виде займов при условии сохранения определенного коэффициента ликвидности, — так появились банковские деньги. Когда собственник клал деньги в банк, а банк выдавал их в виде займа третьему лицу, то эти деньги формально находились у трех разных людей: владельца вклада, банкира и заемщика, — отсюда следует определение денежной массы как суммы наличных денег на руках у населения и банковских вкладов.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.