Том 19. Ипотека и уравнения. Математика в экономике - [32]

Шрифт
Интервал



На этой английской карикатуре 1819 года изображается аукцион, на котором Георг IV продал вещи недавно умершей матери.


Изучение рынка

Проведем исследование рынка на следующем примере: по оценкам, чистящее средство некой марки используют 26 % семей. Была сформирована выборка из 12 семей, которым задали вопрос, какую марку чистящего средства они используют. Нужно определить, какова вероятность того, что в этой выборке от 6 до 9 семей используют чистящее средство рассматриваемой марки. Анализируемая переменная может принимать одно из двух возможных значений («да, используется» и «нет, не используется»), вероятности которых соответственно равны 26 % и 74 % (74 = 100—26).

С помощью законов комбинаторики можно показать, что вероятность РВ(k) того, что в выборке из n семей k будут использовать рассматриваемое чистящее средство, равна где р = 0,26 и (1 — р) = 1–0,26 = 0,74. Эта формула соответствует так называемому биномиальному закону распределения вероятностей, выведенному Якобом Бернулли в XVII веке. В свою очередь, указывает число различных сочетаний из k элементов в группе из n объектов.



где р = 0,26 и (1 — р) = 1–0,26 = 0,74. Эта формула соответствует так называемому биномиальному закону распределения вероятностей, выведенному Якобом Бернулли в XVII веке. В свою очередь,



указывает число различных сочетаний из k элементов в группе из n объектов.

* * *

РАЗЛИЧНЫЕ СПОСОБЫ ГРУППИРОВКИ ОБЪЕКТОВ

Сочетаниями из n объектов по k (где k < n) называются все группы из k объектов; две группы считаются различными, если они отличаются по меньшей мере одним объектом, при этом порядок объектов в группах не имеет значения. Так, число сочетаний (групп) из четырех объектов по 3 обозначается С>3>4 и вычисляется по следующей формуле:



Всего можно составить четыре различные группы. Так, если в качестве четырех исходных элементов мы рассмотрим буквы А, В, С, D, то искомыми четырьмя сочетаниями будут AВС, ABD, ACD, BCD. Существуют другие типы группировки объектов, которые широко используются в дискретной математике, к ним относятся размещения и перестановки.

Размещение из n объектов по m A>n>m определяется так: две группы считаются различными, если они отличаются хотя бы одним элементом или же их элементы расположены в разном порядке. Все возможные размещения из четырех элементов (р, q, r, s) по 3 таковы:

pqr, pqs, prq, psq, prs, psr,

qrp, qpr, qps, qsp, qrs, qsr,

rps, rsp, rpq, rqp, rsq, rqs,

spq, sqp, sqr, srq, spr, srp.

Число размещений вычисляется по формуле A>n>m = m∙(m1)∙(m2)…(mn + 1). В нашем случае число размещений равно

V>3>4 = 4(41) (4 3 + 1) = 432 = 24.

Перестановки — это размещения, содержащие все исходные элементы, то есть размещения при = n. Перестановками из трех элементов (М, N, Р) являются размещения из 3 по 3. Все возможные перестановки таковы: MNP, MPN, NMP, NPM, PMNPNM. Число перестановок вычисляется по формуле

Р>n= n(n1)(n2)(nn + 1) = n(n1)(n2)3∙2∙1 = n!

В нашем случае Р>3 = 3(3 1)(3 2) = 3! = 6.

* * *

Вероятность того, что произойдет одно или несколько возможных событий, равняется сумме вероятностей отдельных событий, если они являются независимыми (то есть не могут произойти одновременно).

В нашем примере вероятность того, что шесть опрошенных используют определенное чистящее средство, равна



Использовав эту формулу, рассчитаем с помощью Excel таблицу значений от РВ(1)до РВ(12).



Распределение вероятностей передается графически двумя способами: справа оно представлено на гистограмме, слева — с помощью графика непрерывной функции





Искомая вероятность того, что рассматриваемую марку средства используют от 6 до 9 опрошенных, равна

РВ (6 < х < 9) = РВ (6) + РВ (7) + РВ (8) + РВ (9) =

= 0,0468708102 + 0,0141155039+ 0,0030996943 + 0,0004840363 = 0,0645700627 = 6,46 %

Средняя величина и среднеквадратическое отклонение для биномиального распределения рассчитываются по формулам:

среднее = μnp; среднеквадратическое отклонение = σ =

В нашем случае

среднее μ = р = 12∙0,24 = 2,88; среднеквадратическое отклонение = σ =

 = 1,479.

Биномиальное распределение — это распределение вероятностей, график которого при больших объемах выборки стремится к графику нормального распределения.

Кривая биномиального распределения слегка асимметрична по сравнению с кривой нормального распределения, которая полностью симметрична.



Слева — графики, описывающие три нормальных распределения с одинаковой средней μ и среднеквадратическим отклонением σ = 1; σ = 2; σ = 3. Справа — графики, описывающие три нормальных распределения с одинаковым среднеквадратическим отклонением σ = 1 передними μ>1, μ>2, μ>3, μ>4.


Статистики и экономисты должны уметь работать с широким спектром распределений вероятности. Каждой конкретной ситуации, в которой встречаются случайные величины (переменные, значения которых невозможно спрогнозировать), соответствует определенное распределение вероятностей (функция распределения).

Некоторые распределения вероятностей описывают экономические и социальные явления. Ситуации, когда изучаемая переменная является дискретной (принимает только целые значения или значения «да»/«нет»), адекватно описываются биномиальным распределением. При непрерывных переменных во многих случаях применяется нормальное распределение, или кривая Гаусса.


Рекомендуем почитать
Динозавры. 150 000 000 лет господства на Земле

Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.