Том 19. Ипотека и уравнения. Математика в экономике - [18]

Шрифт
Интервал

= f(n), где n — порядковый номер члена последовательности.

Существуют другие последовательности, члены которых можно вычислить с помощью формулы, в которой фигурируют один или несколько предшествующих членов: например, последовательность Фибоначчи 1, 1, 2, 3, 5, 8, 13 в которой каждый член является суммой двух предыду щих, или последовательность, общий член которой выражается формулой а>n = + а>n-1; a>1 = 3 (членами этой последовательности являются 3, 5, 8, 12, 17, 23…).

В каждой последовательности необходимо указывать значение начального члена (или членов) и их количество (если последовательность является ограниченной). Если последовательность содержит бесконечное число членов, ее можно продолжать сколь угодно долго, вычисляя значения новых членов по формуле общего члена. Существуют возрастающие последовательности (значения их членов последовательно увеличиваются) и убывающие (значения их членов последовательно уменьшаются), которые могут быть ограниченными или неограниченными.

Последовательности широко используются в финансовой математике. Например, последовательность, члены которой обозначают сумму простых процентов, которые должны быть уплачены ежегодно при начальном капитале, равном 1, и процентной ставке, равной 20 %, выглядит так: 1; 1,2; 1,4; 1,6; 1,8; 2,0; 2,2;… Это неограниченная возрастающая последовательность, общий член которой выражается формулой a>n= 1 + 0,2n.

Последовательность, члены которой обозначают сумму сложных процентов, которые должны быть уплачены ежегодно при начальном капитале, равном 1, и процентной ставке, равной 20 %, выглядит так: 1; 1,2>2; 1,2>3; 1,2>4;… Это неограниченная возрастающая последовательность, общий член которой выражается формулой а>n= (1 0,2)>n.

Последовательность 21, 23, 25, 27, 29, 31, … - это неограниченная возрастающая последовательность, общий член которой выражается формулой а>n  = 21 + 2(n — 1); a>1 = 21.

Последовательность 1, 5, 25, 125, 625, 3125, … - это неограниченная возрастающая последовательность, общий член которой выражается формулой a>n = 5 >n-1; а>1 = 1.

Последовательность 1, 1/3, 1/5, 1/7, 1/9… - это неограниченная убывающая последовательность, общий член которой может быть найден по формуле а>n= 1/(2n1); a>1 = 1

Наконец, 1, 1/7, 1/49, 1/343, 1/2401, неограниченная убывающая последовательность, общий член которой выражается формулой а>n = 1/(7>n-1); а>1 = 1.


Расчет ипотечных кредитов. Как снизить размер долга

Когда мы запрашиваем кредит, то подписываем договор, в котором закрепляются условия кредитования: сумма и периодичность платежей, вид процентов, эквивалентная процентная ставка (в случаях когда срок кредита составляет меньше года), а также действия, предпринимаемые в случае невыполнения одной из сторон своих обязательств.

Если платежи осуществляются в конце расчетного периода, величину фиксированного платежа следует рассчитывать по формуле, которую мы вывели в предыдущем разделе. Часть фиксированного платежа идет в уплату процентов, остаток — в уплату основного долга. В конце каждого периода сумма основного долга к уплате уменьшается, следовательно, уменьшается и сумма процентов к уплате, а часть платежа, направленная в уплату основного долга, последовательно увеличивается.

На основе этих данных составляется график выплат по кредиту, который позволяет в любой момент времени определить, какая часть основного долга выплачена, а какая — подлежит уплате. Далее в качестве примера приведен график платежей по кредиту суммой 10 000 евро под 5 % годовых сроком на пять лет. В этих условиях рассчитывается сумма годового платежа, составляющая 2309,75 евро.

Эта величина получена по формуле (6):




График платежей по кредиту 1.


Как вы можете видеть, с течением времени и по мере внесения платежей сумма основного долга, подлежащего уплате, уменьшается. Как следствие, уменьшается и сумма процентов, а доля платежа, идущая в уплату основного долга, растет.

Может случиться так, что человеку или семье нужно выплачивать сразу несколько кредитов. Например, если человек, взявший кредит, описанный в предыдущем примере, возьмет второй кредит на сумму 30000 евро со сроком погашения 10 лет под 8 % годовых, платеж по которому составляет 4470,88 евро, общая сумма платежей будет составлять 6780,63 евро.



График платежей по кредиту 2.


Если этому человеку не удается вовремя вносить платежи по кредитам, он может обратиться в банк или другое финансовое учреждение, выдавшее кредит, с просьбой о его реструктуризации под более низкие проценты, а главное, при меньшем размере платежей, так как, например, он не может вносить свыше 5000 евро ежегодно. Организация, выдавшая кредит, может предложить объединить два кредита в один суммой 40000 евро под 6 %. Задача заключается в том, чтобы определить срок погашения нового кредита при условии, что ежегодный платеж не превышает 5000 евро.

Чтобы рассчитать срок нового кредита, нужно выразить переменную n из формулы (6) для расчета платежа:



Разделив обе части равенства на С>0, получим


Затем, разделив числитель и знаменатель на (1 i)>n, имеем:



Перейдем к логарифмам:

Вынесем число лет


Рекомендуем почитать
Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».


Возможен ли вечный двигатель?

К созданию невозможного вечного двигателя одни изобретатели приступали, игнорируя законы природы, другие же, не зная их, действовали на авось. В наше время, в эпоху расцвета науки и техники, едва ли есть серьёзные изобретатели, которых увлекала бы бесплодная в своей основе идея создания вечного двигателя.


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.


Золотая Орда. Монголы на Руси. 1223–1502

Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.