Теория струн и скрытые измерения Вселенной - [37]

Шрифт
Интервал

Прежде чем перейти к доказательству, я хотел бы вернуться на несколько десятилетий назад, в 1979 год, когда я еще работал в Институте перспективных исследований. В тот год я пригласил в Принстон более дюжины исследователей со всего мира, работающих в области геометрического анализа, чтобы вместе с ними попытаться заложить основы этой новой дисциплины. Мною было отобрано 120 важнейших геометрических вопросов, почти половина из которых в настоящее время полностью решена. Гипотеза Пуанкаре в этот список не входила. Причиной тому, с одной стороны, было отсутствие необходимости привлекать внимание к задаче, которая и без того являлась одной из известнейших в математике. С другой стороны, я искал задачи, имеющие более узкую формулировку, — такие, на которые можно найти однозначный ответ, — причем, по возможности, в обозримое время. И хотя нам порой приходилось бороться за то, чтобы узнать что-то новое, мы достигли заметного прогресса именно на пути решения подобных задач; это как раз то, что стимулирует математиков к работе сильнее, чем что-либо другое. В то время, однако, никто не знал, что делать с гипотезой Пуанкаре.

Одним из тех, кто не принимал участия в наших дискуссиях, был математик Ричард Гамильтон, работавший тогда в Корнеллском университете и впоследствии осевший на математическом факультете Колумбийского университета. В то время он как раз приступал к выполнению амбициозного проекта, посвященного поиску методов преобразования сложной и не обладающей гладкостью метрики в более гладкую. Несмотря на все упования Гамильтона, эти разработки не принесли столь быстрого успеха, на который он рассчитывал. Его интересовала чрезвычайно сложная система уравнений, относящаяся к вопросу о потоке Риччи — одном из видов геометрического потока, которые уже упоминались ранее. По сути дела, геометрический поток представляет собой метод, позволяющий разгладить выпуклости и прочие неровности на неоднородной поверхности, придавая таким образом поверхностям более однородную кривизну и выявляя фундаментальные формы, лежащие в их основе. Идеи Гамильтона не вошли в мой список из 120 основных задач хотя бы потому, что в то время он еще ничего не опубликовал по этой теме. Он скорее забавлялся ими, чем пытался найти решение.

Возможность познакомиться с его достижениями на 1979 год я получил, выступая с докладом в Корнеллском университете. Гамильтон тогда не считал свои уравнения применимыми к доказательству гипотезы Пуанкаре — он рассматривал их просто как задачу, небезынтересную для исследователя. Впервые столкнувшись с подобными уравнениями, я также занял весьма скептическую позицию по поводу их применимости… Уравнения выглядели слишком сложными, чтобы их можно было использовать на практике. Однако работа, проделанная Гамильтоном после этого, позволила ему опубликовать в 1983 году статью, посвященную решению уравнений, которые сейчас носят название гамильтоновых. В этой статье Гамильтон доказал особый случай гипотезы Пуанкаре, а именно тот случай, при котором кривизна Риччи положительна. О кривизне Риччи, тесно связанной с физикой, более подробно будет рассказано в следующей главе.

Мой изначальный скептицизм побудил меня досконально исследовать статью Гамильтона, вчитываясь буквально в каждую строку, прежде чем я окончательно согласился с ней. При этом доказательство Гамильтона столь захватило меня, что по прочтении я немедленно поручил трем моим аспирантам из Принстона начать работу над его уравнениями. Тогда же я посоветовал Гамильтону попытаться воспользоваться своим подходом для доказательства гипотезы геометризации Тёрстона, относящейся к классификации трехмерных многообразий по восьми типам геометрий, расширенная форма которой включает в себя и общее доказательство гипотезы Пуанкаре. К сожалению, в то время я был мало осведомлен о каких-либо других методах, которые бы пригодились для дальнейшей работы над этим вопросом. Как ни удивительно, Гамильтон взялся за эту задачу с огромной энергией, постепенно продвигаясь в области исследований потока Риччи на протяжении следующих двадцати лет, работая в основном самостоятельно, хотя и находясь в тесном контакте со мной и моими студентами. Контакты между нами заметно оживились в 1984 году, когда мы с Гамильтоном вместе поступили на работу в Калифорнийский университет в Сан-Диего, где заняли смежные офисы. Посещение его семинаров по потокам Риччи было обязательным для всех моих студентов. Сотрудничество с Гамильтоном позволило нам узнать много нового, впрочем, я надеюсь, что он также перенял кое-что и от меня. Переехав в Гарвард в 1987 году, я больше всего жалел об утраченной возможности работать в тесном контакте с Гамильтоном.

Не обращая внимания на окружающих, Гамильтон с неколебимой решительностью занимался решением своей задачи. Помимо прочего им было опубликовано полдюжины важнейших статей — порядка девяноста страниц каждая, — и в конце концов, ни один из его аргументов не оказался бесполезным. Все они пригодились при восхождении на гору Пуанкаре.

Так, например, Гамильтон показал, что все без исключения геометрические объекты, имеющие округлую форму, могут быть преобразованы в сферы при помощи потока Риччи — в полном соответствии с идеями Пуанкаре. Однако, как им было установлено, при деформации более сложных объектов будут неминуемо возникать выступы, складки и прочие сингулярности. Возможности обойти эти сингулярности не было, поэтому столь важным являлся вопрос, с какими именно сингулярностями можно столкнуться в данном процессе. Полный список всевозможных особенностей, которые могут возникнуть при деформации, был сформулирован Гамильтоном на основании моей совместной работы с Питером Ли, к которой я привлек его внимание за несколько лет до этого, — впрочем, Гамильтон весьма впечатляюще обобщил наши результаты.


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.


Рюрик

Исторический триллер.Россия в 9 веке разбита на мелкие княжества, которые враждуют между собой.Князю Гостомыслу предсказывают, что он пригласит править к себе в Новгород — врага своего. Кто он? Сбудутся ли предсказания?А пока русскую землю раздирают на части, то норманны, то варяги. Пришло время выбрать одного правителя на Руси. Местный князь Вадим и его жена (колдунья) — тоже имеют амбициозные планы. И они хотят силой завоевать все славянские княжества. Приходится Гостомыслу просить помощи у своего внука — финского принца Рюрика.


Игорь

Исторический триллер.Сейчас уже мало кто верит в колдовство и сверхъестественные силы. И уж, конечно, мало найдётся людей, которые знают, что такое честь и рыцарское достоинство. А в девятом веке новой эры эти понятия были, почти обыденными.В этой книге рассказывается о том, как в седой древности русские князья Игорь и Олег создавали новое государство Киевскую Русь. Преодолев огонь сражений, колдовские силы и коварство врагов, они добились своего, и заветная мечта отца князя Игоря Рюрика воплотилась в жизнь.