Теория струн и скрытые измерения Вселенной - [35]

Шрифт
Интервал

. Это отображение является взаимно-однозначным, то есть каждая точка одной поверхности соответствует строго определенной точке другой поверхности. Более того, точки, находившиеся в непосредственной близости друг от друга на первой поверхности, после подобного отображения по-прежнему останутся рядом.

Второй метод сравнения многообразий характеризуется несколько большей утонченностью и строгостью. В этом случае вопрос состоит в том, возможно ли перейти от одного многообразия к другому, не нарушая его гладкости, то есть не вводя так называемые сингулярности, например острые углы или пики на поверхности. Многообразия, эквивалентные в этом смысле, носят название диффеоморфных. Чтобы два многообразия можно было считать диффеоморфными, функция, преобразующая одно многообразие в другое — или, иными словами, переводящая набор координат одного пространства в набор координат второго, — должна быть гладкой — дифференцируемой, то есть иметь производную во всех точках пространства в любой момент времени. График такой функции также должен быть гладким — не иметь никаких «зазубрин» во всех смыслах этого слова — наличие на нем обрывов, участков скачкообразного роста или падения привело бы к тому, что в определенных точках само понятие производной потеряло бы смысл.

В качестве примера рассмотрим сферу, помещенную внутрь эллипсоида — поверхности, имеющей форму дыни, — так, что их центры совпадают. Лучи, проведенные из их общего центра во всех возможных направлениях, соединят точки на сфере с точками на эллипсоиде. Подобная операция может быть проделана для любой точки эллипсоида или сферы. Отображение в данном случае не только является непрерывным и однозначным, но оно также не нарушает гладкости отображаемой поверхности. Функция, связывающая две эти поверхности, также не имеет никаких особенностей — это просто прямая линия без зигзагов, резких поворотов и вообще чего-либо необычного. Таким образом, два рассматриваемых объекта — сферу и эллипсоид — можно назвать как гомеоморфными, так и диффеоморфными.

Рис. 3.12. Геометр Саймон Дональдсон


Противоположным примером является так называемая экзотическая сфера. Экзотической сферой называется гладкое во всех точках семимерное многообразие, которое, тем не менее, невозможно без нарушения гладкости преобразовать в обычную круглую семимерную сферу даже при соблюдении условия непрерывности преобразования. Таким образом, подобные поверхности являются гомеоморфными, но не диффеоморфными. Джон Мильнор, уже упоминавшийся в данной главе, получил медаль Филдса во многом благодаря установлению им факта существования экзотических пространств. До открытия Мильнора многие сомневались в существовании таких пространств, поэтому их и назвали экзотическими.

Плоское евклидово пространство для случая двух измерений является простейшим из всех пространств, которые можно себе представить, — это плоская поверхность, подобная крышке стола, которая простирается бесконечно во всех возможных направлениях. На вопрос, будет ли двухмерный диск, множество точек которого является подмножеством точек плоскости, гомеоморфным и диффеоморфным данной плоскости, можно ответить — да, будет. Можно представить себе толпу людей, стоящих на плоскости, каждый из которых берет в руку краешек диска и идет с ним в направлении от центра диска. Как только они достигнут бесконечности, диск точно, непрерывно и однозначно совпадет с плоскостью. Таким образом, эти объекты идентичны с точки зрения тополога. Очевидно и то, что подобный процесс растягивания диска в радиальном направлении можно проделать без нарушения его гладкости.

Все вышесказанное сохраняет свою силу для трех и любого другого числа измерений за исключением случая четырех. В четырехмерном пространстве многообразия могут быть гомеоморфны плоскости или плоскому евклидовому пространству, не будучи при этом диффеоморфны ему. По сути, существует бесконечное множество четырехмерных многообразий, гомеоморфных, но не диффеоморфных четырехмерному евклидовому пространству, носящих общее название ℝ>4 (ℝ — от «real» — означает, что элементами пространства являются действительные числа, в противоположность комплексному четырехмерному пространству).

Четырехмерное пространство преподносит нам множество особенностей и загадок. Так, к примеру, в пространственно-временном континууме, содержащем 3+1 измерение (три пространственных и одно временное), по словам Дональдсона, «электрическое и магнитное поля будут идентичны». «Но для другого числа измерений с геометрической точки зрения это будут два совершенно разных объекта. Одно из них представляет собой тензор и описывается при помощи матрицы, тогда как другое — вектор, и сравнивать их невозможно. Только в четырех измерениях и то и другое поле будет описываться векторами. Симметрия, имеющая место в данном случае, для иного числа измерений будет отсутствовать».[37]

Дональдсона, по его словам, восхищает тот факт, что с фундаментальной точки зрения невозможно точно указать, что именно выделяет случай четырех измерений среди всех остальных. До того как вышла его работа, о «гладкой эквивалентности» (диффеоморфизме) не было известно практически ничего, хотя благодаря математику Майклу Фриману (ранее работавшему в Калифорнийском университете, Сан-Диего) уже существовали определенные наработки в области топологической эквивалентности (гомеоморфизма). В свою очередь Фриман классифицировал четырехмерные многообразия с топологической точки зрения, основываясь на более ранней работе Эндрю Кассона, в настоящее время работающего в Йельском университете.


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.


Рюрик

Исторический триллер.Россия в 9 веке разбита на мелкие княжества, которые враждуют между собой.Князю Гостомыслу предсказывают, что он пригласит править к себе в Новгород — врага своего. Кто он? Сбудутся ли предсказания?А пока русскую землю раздирают на части, то норманны, то варяги. Пришло время выбрать одного правителя на Руси. Местный князь Вадим и его жена (колдунья) — тоже имеют амбициозные планы. И они хотят силой завоевать все славянские княжества. Приходится Гостомыслу просить помощи у своего внука — финского принца Рюрика.


Игорь

Исторический триллер.Сейчас уже мало кто верит в колдовство и сверхъестественные силы. И уж, конечно, мало найдётся людей, которые знают, что такое честь и рыцарское достоинство. А в девятом веке новой эры эти понятия были, почти обыденными.В этой книге рассказывается о том, как в седой древности русские князья Игорь и Олег создавали новое государство Киевскую Русь. Преодолев огонь сражений, колдовские силы и коварство врагов, они добились своего, и заветная мечта отца князя Игоря Рюрика воплотилась в жизнь.