Темная сторона материи. Дирак. Антивещество - [23]

Шрифт
Интервал

С другой стороны, Дираку следовало учитывать принцип относительности. Квантовое релятивистское уравнение должно было действовать для любой инерциальной системы отсчета. Но как этого добиться? Решение Дирака своей красотой и простотой подтверждает его огромный творческий гений. В рамках релятивистской теории время и пространственные координаты являются составляющими «четырехмерного вектора пространство — время». Дирак заключил из этого, что нет причин обращаться по-разному с двумя видами переменных в квантовом волновом уравнении. Наоборот, если волновое уравнение должно было быть, согласно квантовой теории, уравнением первого порядка по производной по времени, то релятивистская теория требовала введения пространственных переменных в виде их первых производных. Это симметричное обращение со временем и пространством согласовывалось с релятивистской формулировкой, но уводило от нерелятивистского уравнения Шрёдингера, в котором временные и пространственные переменные появлялись по-разному: производная первого порядка по времени и второго порядка по пространственным переменным. Дирак считал симметрию главным условием релятивистской теории, которая в свою очередь должна согласовываться с релятивистским выражением для энергии:

E = √(c>2 р>2 + m>2с>4) (свободная частица).


САМОСОПРЯЖЕННЫЕ ОПЕРАТОРЫ (ЭРМИТОВЫ ОПЕРАТОРЫ) И МАТРИЦЫ ПАУЛИ

Самосопряженные операторы (эрмитовы операторы) важны для квантовой теории, поскольку присущее им собственное значение является действительным. В случае оператора Гамильтона «самосопряженность» гарантирует нам, что энергия системы, которую мы изучаем, будет действительной. Оператор называют самосопряженным, когда он совпадает со своим сопряженным. Возьмем общий случай квантового оператора, представленного в матричной форме матрицы 2x2:


Сопряженный оператор задан матрицей, выстроенной из изначальной матрицы, в которой изменяются строки и столбцы, и каждый элемент заменен комплексно-сопряженным ему элементом. Такая матрица называется сопряженной:


Если две матрицы согласуются друг с другом, то есть если Ó = Ö, говорят, что матрица Ó является эрмитово-сопряженной, и в этом случае можно доказать, что ее значения являются действительными. Три матрицы Паули, σ>x>y>z, являются эрмитово-сопряженными, и они «антикоммутативны» между собой, то есть соблюдают общие отношения, вытекающие из уравнения Дирака. Однако можно доказать, что любая матрица размера 2x2 может быть записана в виде линейной комбинации трех матриц Паули плюс единичная матрица. Это означает, что невозможно найти четвертую матрицу, которая антикоммутативна каждой из трех матриц Паули. Иными словами, уравнение Дирака требует, чтобы размер каждого из четырех матричных коэффициентов, подлежащих определению, был больше 2x2. Кроме того, матрицы Дирака удовлетворяют антикоммутационным соотношениям, и их след равен нулю.


В итоге его требования к новому квантовому релятивистскому уравнению электрона можно описать следующим образом.

1. Это должно быть дифференциальное уравнение первого порядка по времени, которое симметрично включает пространственные переменные, то есть с производными первого порядка.

2. Оператор Гамильтона должен быть самосопряженным — так, чтобы плотность вероятности определялась положительным значением и чтобы энергии были действительными.

3. Оно должно согласовываться с релятивистским выражением для энергии и быть релевантным для любой инерциальной системы отсчета.

Таким образом, Дирак предложил следующее общее уравнение:


Заметим, что два вида переменных — пространство и время — включены одним способом. Кроме того, существует дополнительный член уравнения, ßmc>2, связанный с собственной массой электрона, то есть с массой в системе, в которой он находится в состоянии покоя. Уравнение зависит от четырех неизвестных коэффициентов: α>x>y>z,β. Таким образом, вопрос состоит в том, как их определить. Для этого Дирак должен был доказать совместимость своего уравнения с релятивистским выражением для энергии.

Он полностью осознавал «эквивалентность» квантовых операторов и соответствующих классических величин. Кстати, именно это соответствие позволило объяснить форму уравнения Шрёдингера и уравнения Клейна — Гордона. Используя аналогию между классическим и квантовым миром, квантовое уравнение, предложенное Дираком, вело к следующему классическому уравнению для энергии:

Е= с (α>xp>x + α>yр>y + α>zp>z) + ßmc>2.

Как связать данное уравнение, линейное в трех составляющих кинетического момента со сложным релятивистским выражением энергии, в котором появляется квадратный корень? Дирак искал способ, позволивший бы ему записать в линейном виде релятивистское уравнение энергии, определив четыре неизвестных коэффициента. Первым большим шагом вперед в этом направлении было открытие того, что его квантовое уравнение может быть совместимым с релятивистским выражением для энергии, только когда введенные им коэффициенты не коммутируют между собой и, кроме того, если квадрат каждого оператора равен единице. Математически это выражается в следующей форме:

α>iα>j = - α>jα>i (i ≠ j); α


Рекомендуем почитать
Так это было

Автобиографический рассказ о трудной судьбе советского солдата, попавшего в немецкий плен и затем в армию Власова.


Генерал Том Пус и знаменитые карлы и карлицы

Книжечка юриста и детского писателя Ф. Н. Наливкина (1810 1868) посвящена знаменитым «маленьким людям» в истории.


Максим из Кольцовки

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Песни на «ребрах»: Высоцкий, Северный, Пресли и другие

Автором и главным действующим лицом новой книги серии «Русские шансонье» является человек, жизнь которого — готовый приключенческий роман. Он, как и положено авантюристу, скрывается сразу за несколькими именами — Рудик Фукс, Рудольф Соловьев, Рувим Рублев, — преследуется коварной властью и с легкостью передвигается по всему миру. Легенда музыкального андеграунда СССР, активный участник подпольного треста звукозаписи «Золотая собака», производившего песни на «ребрах». Он открыл миру имя Аркадия Северного и состоял в личной переписке с Элвисом Пресли, за свою деятельность преследовался КГБ, отбывал тюремный срок за изготовление и распространение пластинок на рентгеновских снимках и наконец под давлением «органов» покинул пределы СССР.


Экран и Владимир Высоцкий

В работе А. И. Блиновой рассматривается история творческой биографии В. С. Высоцкого на экране, ее особенности. На основе подробного анализа экранных ролей Владимира Высоцкого автор исследует поступательный процесс его актерского становления — от первых, эпизодических до главных, масштабных, мощных образов. В книге использованы отрывки из писем Владимира Высоцкого, рассказы его друзей, коллег.


Неизвестный Дзержинский: Факты и вымыслы

Книга А. Иванова посвящена жизни человека чье влияние на историю государства трудно переоценить. Созданная им машина, которой общество работает даже сейчас, когда отказывают самые надежные рычаги. Тем более странно, что большинству населения России практически ничего неизвестно о жизни этого великого человека. Книга должна понравиться самому широкому кругу читателей от историка до домохозяйки.