Техника и вооружение 2006 03 - [6]

Шрифт
Интервал

К 1960 г. концепция суперкавитирующего объекта обрела законченность, что дало возможность поставить вопрос его практической разработки.

Решительный прорыв в практической реализации суперкавитационных режимов движения был сделан после принятия в 1961 г. постановления ЦК КПСС и Совета Министров СССР о разработке соответствующих скоростных объектов, ас 1964 г. решением ВПК при Совете Министров научное руководство программой было возложено на ЦАГИ в лице Г.В. Логвиновича. Постановление имело целый ряд важнейших последствий:

— определился разработчик сверхскоростного объекта — нынешнее ОАО Г11ПП «Регион»;

— тематика суперкавитационных течений получила импульс к развитию в целом ряде ведущих НИИ страны, прежде всего в НИИ механики МГУ. ИГ СО АН, ИГ АН УССР и др.;

— появилась возможность резко обновить и расширить экспериментальную базу ЦАГИ по скоростной гидродинамике'.

Существеннейшим элементом развития экспериментальной базы ЦАГИ стало создание инфраструктуры, обеспечивающей разработку, постройку и испытания крупномасштабных самоходных моделей-лабораторий, получивших по калибру корпуса общее название М-205. Модели оснащались двигателем, системой автоматического управления, бортовыми регистраторами. В общей сложности было выполнено около тысячи пусков моделей.

Наряду с исследованиями стационарных или почти стационарных режимов кавитационного обтекания появилась необходимость изучения нестационарных кавитационных течений, возникающих при быстром входе в воду тел различной формы.

Такие режимы движения отличаются особой сложностью, поскольку сопровождаются деформацией свободной поверхности жидкости, быстрым изменением смоченной поверхности тела, развитием нестационарных каверн с участием атмосферного воздуха, реализацией различных типов замыкания каверн. В ЦАГИ были выполнены обширные исследования но определению гидродинамических сил, возникающих в процессе пересечения телами свободной поверхности.

Изучение несимметричного входа в воду тел вращения и поиск путей снижения ударных гидродинамических сил привели к научному открытию, использование которого дает возможность практически полностью устранить нестационарную составляющую сил при погружении тел в жидкость.

Поверхностное смыкание каверн, возникающее при входе тел в воду через свободную поверхность, исследовалось Ю.Ф. Журавлевым, ему удалось разработать соответствующую математическую модель, адекватно описывающую явление.



Исследование кавитационного движения ракет.





Исследование входа в воду кавитирующей ракеты.


Изучение последующих стадий проникновения тела в жидкость в режиме развитой кавитации привело к обнаружению возможности достижения телом, имеющим определенную расчетную форму, больших глубин за очень короткое время. Так, при начальной скорости 1200 м/с тело массой 500 кг, движущееся по инерции, может достичь глубины 500 м менее чем за 1 с.

Одним из негативных явлений, сопровождающих вход скоростных объектов в воду, является возможность рикошета. Особенно вероятны рикошеты при входе в воду под малым утлом к горизонту. Это явление было подробно изучено в работах В.В. Стрекалова. Им была предложена классификация возможных вариантов рикошетов. Для устранения возможности рикошетов в ЦАГИ были разработаны обводы кавитаторов и специальных носовых насадков более чем двадцати вариантов.

Гидродинамика подводного старта объектов морского вооружения, в том числе баллистических ракет подводных лодок, — одно их важнейших направлений исследований отделения гидродинамики ЦАГИ.

Конструкторские бюро, которым поручалось создание баллистических ракет, а также противолодочных и противокорабельных ракет (КБ Машиностроения, ныне ГРЦ «КБ им. академика В.П. Макеева», НПО Машиностроения, КБ «Новатор» и др.) с начала 1960-х гг. привлекли к своим разработкам научные коллективы филиала ЦАГИ, НИИ механики МГУ и ряд других организаций. В филиале ЦАГИ значительно расширяется «оборонный отдел»: помимо двух существующих секторов организуются еще три. Сектора возглавляют Г.В. Логвинович, М.Г. Щеглова, О.П. Шорыгин, Е.Н. Капанкин, Ю.Ф. Журавлев.

Были определены основные направления исследований в области гидродинамики и газодинамики, являвшиеся ключевыми для решения этой большой научно-технической проблемы.

Процесс подводного старта ракеты можно разделить па несколько основных этапов, требующих специального теоретического и экспериментального изучения.

В момент запуска двигателя ракеты в шахте, заполненной водой, возникают сложные гидрогазодинамические процессы, в ходе которых реализуется сила, выталкивающая ракету из пусковой шахты. Исследования этих процессов привели к выдвижению так называемой «гипотезы изотермичности», заключающейся в том, что ь связи с громадной теплоемкостью воды присутствие в шахте даже относительно небольшого ее количества вызывает выравнивание и резкое понижение температуры газожидкостной смеси в процессе выхода ракеты из шахты (Е.Н. Капанкин, Э.В. Куприянов). Эта гипотеза, подтвержденная большим количеством экспериментов, позволила создать методику расчета внутренней баллистики пускового режима движения ракеты в шахте.


Еще от автора Журнал «Техника и вооружение»
Техника и вооружение 2010 01

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Техника и вооружение 2012 12

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.



Техника и вооружение 2010 02

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Техника и вооружение 2002 09

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.



Рекомендуем почитать
Пыльная работа

Министерство обороны США решило провести сравнительные испытания в пылевой камере карабина М4 и некоторых его конкурентов, а именно штурмовых винтовок HK XM8, HK 416 и Mk16 (FNH SCAR-L) на предмет проверки их функционирования в условиях сильной запылённости. Эти испытания прошли в сентябре-ноябре 2007 года на армейском полигоне Aberdeen Proving Ground в штате Мериленд и их результаты оказались неутештельными для карабина М4.


На замену АК-47…

Продолжительность действия тактико-технических требований к перспективному автомату за №006256-53 г. оказалась недолгой. Конструкторские наработкии результаты исследований различных типов автоматики позволили уже в 1955 г.отработать новые ТТТ.


Первый в династии

В предыдущих номерах журнал («КАЛАНИКОВ» №8, 9, 10/2009) мы рассказывали о полигонных испытаниях автомата Калашникова, проходивших в 1947-48 гг., результатом которых стала рекомендация к принятию автомата на вооружение Советской армии. Подходило время войсковых испытаний.


ППС

В конце 1941 года были отработаны тактико-технические требования (ТТТ) к новому ПП, а в конце июля 1942 года, по результатам полигонных испытаний (попутно было испытано около 20 конструкций ПП), ГКО СССР принял решение: для проведения обширных войсковых испытаний организовать серийное производство ППС-42 конструкции А. И. Судаева в условиях блокадного Ленинграда.


ПКМ – единство надёжности и мощи

Имя М.Т.Калашникова прежде всего ассоциируется с автоматами серии АК различных модификаций. О Калашникове – конструкторе лучшего единого пулемёта ХХ века (даже по оценкам иностранных специалистов) неискушённая публика даже не подозревает.


Новобранец «Ярыгин»

Эта статья посвящена – 9-мм пистолету Ярыгина (ПЯ), которому в наследство от темы «Грач» по праву достался индекс 6П35.