Встретившиеся на начальных этапах разработки ракеты теоретические и конструктивные проблемы потребовали привлечения широкого круга специализированных научно-исследовательских (ЦАГИ. ЦИАМ и пр.) и конструкторских организаций. Выбор параметров маршевого двигателя ракеты осложнялся также тем, что для ракеты предполагалось использование уже имевшегося стартового ускорителя В связи с этим время работы маршевого двигателя и количество топлива в нем, обеспечивающие активный полет маршевой ступени, были практически однозначно определены, при этом энергетические возможности оказались несколько хуже, чем при реализации теоретически оптимальных характеристик. Свойственный зенитным управляемым ракетам широкий диапазон изменения параметров набегающего потока определил то, что величина развиваемой маршевым двигателем тяги значительно менялась в зависимости от этих условий. Ситуация усложнялась тем, что практически отсутствовала возможность регулирования процесса горения топлива для соответствия оптимальным значениям секундного расхода конкретным условиям полета.
На начальных стадиях проектирования для регулирования тяги маршевого двигателя было решено использовать сопло с величиной критического сечения, изменяемой в соответствии с условиями полета. На дальнейших этапах вместо этого для газогенератора маршевого двигателя подобрали такую форму твердотопливного заряда, которая обеспечивала приемлемую зависимость расхода топлива по времени полета для типовой траектории ракеты.
Спроектированный твердотопливный ракетно-прямоточный двигатель обладал простотой и надежностью твердотопливного двигателя в сочетании с высокими энергетическими характеристиками прямоточного Ожидалось достижение при его работе величин удельного импульса порядка 400–450 кгс. с/кг Органическое сочетание достоинств этих типов двигателей обеспечивало необходимые величины тяги маршевой двигательной установки во всем рабочем диапазоне высот полета ракеты. На низких траекториях основную долю тяги должен был создавать прямоточный двигатель, а на больших высотах для поддержания высокой средней скорости полета оказывалось достаточно тяги, возникающей при истечении газов из газогенератора.
Однако весьма непростые вопросы эффективной совместной работы твердотопливного и прямоточного двигателей в то время находились еще в стадии теоретической и экспериментальной проверок и отработок. Требовалась проверка основных положений, заложенных в конструкцию этого двигателя, на различных масштабных моделях. В процессе продувок моделей в аэродинамических трубах получили первые данные о возможности дожигания специального твердого топлива в прямоточном двигателе, о необходимых для обеспечения высокой эффективности процесса сгорания размерах камеры двигателя и т. д.
Для удовлетворения противоречивых требований по устойчивости и управляемости ракеты, обеспечения необходимой эффективности ее боевой части, достижения наивыгоднейших параметров работы двигательной установки, удобства эксплуатации и обслуживания бортовой аппаратуры, при выборе компоновки ракеты было рассмотрено множество вариантов размещения элементов ЗУР.
Для ракеты была выбрана нормальная аэродинамическая схема. На корпусе маршевого двигателя были размещены крылья и рули, служащие для управления по тангажу и курсу, а также для стабилизации по всем трем каналам.
На носовой части корпуса ракеты находились неподвижные дестабилизаторы. снижающие запас статической устойчивости до уровня, при котором рули ракеты выводипи бы ее на заданный угол атаки. В отличие от схемы «утка», такое расположение аэродинамических поверхностей обеспечивало нормальную работу кольцевого воздухозаборника маршевого двигателя, перед которым не было возмущающих воздушный поток подвижных элементов.
Состоявшее из пяти отсеков центральное тело двигателя маршевой ступени по компоновке было в основном аналогично корпусу ракеты В-755. Внутри него последовательно располагались радиовзрыватель 5Е11, боевая часть с ПИМ И-98. радиоаппаратура ФР-15М с автопилотом АП-755, газогенератор с топливом и механизмы управления рулями. Антенны системы радиовизирования и приема команд располагались на внешнем корпусе в передней и задней частях ракеты.
Экспериментальная ЗУР семейства 17Д перед бросковым испытанием
Передняя часть корпуса, включая разъемы для установки боевой части и радиовзрывателя, ракет В-757 и В-755 была идентична. К заднему торцу газогенератора крепился конус. Центральное тело и обечайка маршевого двигателя соединялись с помощью четырех пилонов. Маршевая ступень ракеты и ускоритель были связаны стальной фермой, которая крепилась шпильками к конусу Ускоритель крепился к ферме болтами, которые в начальный момент движения срезались, позволяя ускорителю отделиться после окончания его работы.
Ускоритель, состоявший из твердотопливного двигателя, четырех стабилизаторов. упорного конуса и хвостового отсека, за исключением узлов сочленения и расцепки с маршевой ступенью, ничем не отличался от ускорителя ракет «семейства» В-750.
Камера сгорания маршевого ракетнопрямоточного двигателя была образована кольцевым зазором. Продольное сечение этого зазора, в котором происходило движение воздуха и продуктов сгорания, было спрофилировано по результатам газодинамических расчетов двигателя и испытаний моделей. В передней части был образован диффузор для входа сверхзвукового потока воздуха. В этом же месте был предусмотрен отвод пограничного слоя в специальные отверстия и далее сквозь полости в пилонах — на наружную поверхность внешнего корпуса ракеты с истечением через специальные обтекатели.