Структурный анализ систем - [9]
Видоизмененные вещества В>'>1 или В>'>2 могут браться в готовом виде или получаться на месте. Устранение вредных связей в системе производится введением между веществами В>1 и В>2 видоизмененного вещества В>1 (В>'>1) или В>2 (В>'>2), осуществляемое введением дополнительного поля П>2, которое, воздействуя на имеющееся вещество В>1 или В>2, видоизменяет их, получая В>'>1 или В>'>2. Это можно представить в виде схемы (4.5).
Пример 4.19. Снижение гидродинамического сопротивления
Для снижения гидродинамического сопротивления движения тел, например судов, путем уменьшения сил трения, в пограничном слое создают электромагнитное поле, генерирующее комплекс молекул. В этом изобретении не вводят в пограничный слой высокомолекулярный состав, а вместо него используют видоизмененную внешнюю среду В>'>2, путем воздействия электромагнитным полем. Кроме того, это изобретение может использоваться для снижения сопротивления жидкости в трубопроводе.
На рис. 4.16 показан один из вариантов, описанных в а. с. 364 493. Носовая часть объекта, движущегося в жидкости, выполняется из алюминия или железа. Ее соединяют с положительным полюсом источника тока, а корпус соединяют с отрицательным полюсом. Между корпусом и носовой частью имеется изоляционная прокладка. При подаче напряжения образуются частицы гидроокиси алюминия — Al (OH)> 3, которые в пограничном слое снижают гидродинамическое сопротивление, аналогично вводимым в пограничный слой добавкам полимеров. При генерировании частиц Al (OH)> 3 непосредственно используется окружающая среда.
В данном решении использованы физико-химические эффекты.
Для данного изобретения вепольная структура (4.5) будет иметь вид (4.6)
Рис. 4.16. Снижение гидродинамического сопротивления
по а. с. 364 493
В данном примере: В>1 — вода, В>2 — судно, подводное крыло и т. п., П>1 — поток воды, П>2 — электромагнитное поле, В>'>2. — комплекс молекул.
4.5. «Оттягивание» вредного действия
Устранение вредного действия поля П>1 на вещество В>1 осуществляется введением второго вещества В>2, оттягивающего на себя вредное действие поля П>1.
Оттягивание вредного действия можно представить в виде (4.7).
Пример 4.20. Предохранитель
При резком увеличении тока в сети провод может перегореть. Чтобы этого не произошло, используют предохранитель, который может быть одноразовый (плавкий предохранитель) или многократного использования — автомат.
4.6. Устранение вредных связей введением П>2
Вредное действие устраняется переходом к двойному веполю, в котором нейтрализацию вредного действия поля П>1 осуществляет поле П>2. Это можно представить в виде (4.8).
Задача 4.10. Искусственная шаровая молния
Условия задачи
В лаборатории под руководством академика П. Л. Капицы исследовалась искусственная шаровая молния в герметичной кварцевой цилиндрической камере, заполненной гелием под давлением 3 атм. (рис. 4.17). Под действием мощного электромагнитного поля в гелии возникает плазменный шнуровой разряд, стягивающийся в сферический сгусток плазмы — «шаровую молнию». Для удержания «шаровой молнии» в центре камеры используют соленоид, кольцеобразно расположенный вокруг камеры. По программе эксперимента нужно было увеличить мощность шаровой молнии, для чего повысить мощность электромагнитного излучения.
Плазма стала более горячей и, следовательно, менее плотной. Шаровая молния при этом становится легче и всплывает вверх, касаясь стенок камеры и разрушая их. Электромагнитные силы не уравновешивают архимедовы силы. Чтобы удержать молнию в центре камеры, попробовали повысить мощность магнитного поля в соленоиде, но ничего не получилось: молния поднималась вверх — только чуть медленнее. Сотрудники предложили строить новую установку с более мощным соленоидом, но П. Л. Капица поступил иначе. Как?
Рис. 4.17. Установка для получения искусственной шаровой молнии
Разбор задачи
Представим задачу в вепольном виде (4.9).
Дан неэффективно управляемый веполь:
В>1 — молния;
П>1 — гравитационное поле, действует на молнию;
В>2 — газ, который не уравновешивает действие гравитационного поля.
Чтобы повысить управляемость рассмотренного веполя необходимо ввести противодействующее поле П>2 в соответствии со схемой (4.10).
Поле П>2 должно противодействовать гравитационному полю П>1. Эффективнее всего было бы использовать электромагнитное поле, но для этого нужно было бы полностью переделывать установку. В соответствии с тенденцией развития веполей первоначально следует использовать механические поля10. Наиболее эффективное в данном случае — поле центробежных сил.
П. Л. Капица предложил завертеть газ, придавая ему непрерывное вращение. Вместе с газом завертелся и сам разряд и перестал всплывать… Газ заставляли непрерывно вращаться воздуходувки, хорошо знакомые всем по домашнему пылесосу. Впрочем, именно домашний пылесос и был использован на первых порах (рис. 4.18).
П>2 — центробежное поле.
Рис. 5.31. Создание центробежных сил с помощью пылесоса
4.7. Устранение вредных связей введением В>3 и П>2
Вредное действие устраняется переходом к смешанному веполю, в котором вводимое вещество В>3 генерирует поле П>2, нейтрализующее вредное действие поля
Излагаются методы активизации творческого процесса, такие как мозговой штурм, синектика, морфологический анализ, метод фокальных объектов и метод контрольных вопросов. Приведены история возникновения методов, их основные правила и примеры использования.Материал рекомендуется освоить до изучения ТРИЗ.Книга предназначена для широкого круга читателей, студентов, учащихся школ, инженеров и изобретателей, ученых, преподавателей университетов и людей, решающие творческие задачи.
В работе изложена история развития приемов разрешения противоречий, разработанных основателем теории решения изобретательских задач — ТРИЗ Г. С. Альтшуллером. Приемы являются разделом информационного фонда ТРИЗ. В работе проведен анализ всех известных автору модификаций приемов.Данные материалы могут быть полезны преподавателям и разработчикам ТРИЗ, и использованы как для изучения истории ТРИЗ, так и для развития самой теории.
Предлагается методика продвижения продуктов на рынок, использующая закономерности развития продукта, компании и рынка и их взаимодействие.
Это учебник, описывающий метод решения нестандартных задач, состоящий из 5 шагов. Метод легко усваивается и пригоден для решения задач из любой области знаний. В книге разобрано 88 задач, из них 41 — для самостоятельного решения. Авторский разбор этих задач приведен в приложении. Книга рассчитана на широкий круг читателей, от детей школьного возраста и до людей любых специальностей.
Эта книга — впервые созданный учебник по АРИЗ-85-В. Она состоит из двух частей: собственно учебника и задачника, выполненных в виде отдельных томов. В данном томе представлен задачник. Его цель — развить навыки использования АРИЗ-85-В. Он содержит задачи и их разбор по АРИЗ-85-В. В книге приводится 104 примера и 98 задач, 231 иллюстрация, 21 формула и 8 физических эффектов. Книга рассчитана на широкий круг читателей и будет особенно полезна тем, кто хочет быстро получать новые идеи.
Как получают целыми ядра грецкого ореха для конфет? Как Форд снизил простои конвейера? И еще 140 примеров и 250 иллюстраций.Не поверите, самые остроумные идеи величайших изобретателей – от Леонардо да Винчи до Стива Джобса – основаны на простых приемах. В книге – самые мощные из них:АНАЛОГИЯ – сделаем подобно…ИНВЕРСИЯ – давайте сделаем наоборот…ЭМПАТИЯ – представим себя на месте…ФАНТАЗИЯ – станем волшебниками! И тогда…
Монография впервые в отечественной и зарубежной историографии представляет в системном и обобщенном виде историю изучения восточных языков в русской императорской армии. В работе на основе широкого круга архивных документов, многие из которых впервые вводятся в научный оборот, рассматриваются вопросы эволюции системы военно-востоковедного образования в России, реконструируется история военно-учебных заведений лингвистического профиля, их учебная и научная деятельность. Значительное место в работе отводится деятельности выпускников военно-востоковедных учебных заведений, их вкладу в развитие в России общего и военного востоковедения.
Как цикады выживают при температуре до +46 °С? Знают ли колибри, пускаясь в путь через воды Мексиканского залива, что им предстоит провести в полете без посадки около 17 часов? Почему ветви некоторых деревьев перестают удлиняться к середине июня, хотя впереди еще почти три месяца лета, но лозы и побеги на пнях продолжают интенсивно расти? Известный американский натуралист Бернд Хайнрих описывает сложные механизмы взаимодействия животных и растений с окружающей средой и различные стратегии их поведения в летний период.
Немногие культуры древности вызывают столько же интереса, как культура викингов. Всего за три столетия, примерно с 750 по 1050 год, народы Скандинавии преобразили северный мир, и последствия этого ощущаются до сих пор. Викинги изменили политическую и культурную карту Европы, придали новую форму торговле, экономике, поселениям и конфликтам, распространив их от Восточного побережья Америки до азиатских степей. Кроме агрессии, набегов и грабежей скандинавы приносили землям, которые открывали, и народам, с которыми сталкивались, новые идеи, технологии, убеждения и обычаи.
Голуби, белки, жуки, одуванчики – на первый взгляд городские флора и фауна довольно скучны. Но чтобы природа заиграла новыми красками, не обязательно идти в зоопарк или включать телевизор. Надо просто знать, куда смотреть и чему удивляться. В этой книге нидерландский эволюционный биолог Менно Схилтхёйзен собрал поразительные примеры того, как от жизни в городе меняются даже самые обычные животные и растения. В формате PDF A4 сохранен издательский макет.
«Представляемая мною в 1848 г., на суд читателей, книга начата лет за двадцать пред сим и окончена в 1830 году. В 1835 году, была она процензирована и готовилась к печати, В продолжение столь долгого времени, многие из глав ее напечатаны были в разных журналах и альманахах: в «Литературной Газете» Барона Дельвига, в «Современнике», в «Утренней Заре», и в других литературных сборниках. Самая рукопись читана была многими литераторами. В разных журналах и книгах встречались о ней отзывы частию благосклонные, частию нет…».
Бой 28 июля 1904 г. — один из малоисследованых и интересных боев паровых броненосных эскадр. Сражение в Желтом море (японское название боя 28.07.1904 г.) стало первым масштабным столкновением двух противоборствующих флотов в войне между Россией и Японией в 1904–05 гг. Этот бой стал решающим в судьбе русской 1-й эскадры флота Тихого океана. Бой 28.07.1904 г. принес новый для XX века боевой опыт планирования, проведения морских операций в эпоху брони и пара, управления разнородными силами флота; боевого использования нарезной казнозарядной артиллерии с бездымным порохом и торпедного оружия.