Системная реабилитология - [47]

Шрифт
Интервал

. Резкие колебания в эстрацеллюлярном пространстве количества гормонов, нейромедиаторов или каких-либо веществ, неблагоприятно воздействующих на клетку и могущих привести к нарушению ее жизнедеятельности, будут демпфированы за счет снижения активности фосфоинозитольной системы и циклических нуклеотидов, то есть за счет управляемого ограничения синтеза мембранных рецепторов и вторичных внутриклеточных информационных посредников (см. предыдущую главу). Благодаря этому может изменяться в значительной мере характер и выраженность ответа клетки на регулирующие внеклеточные стимулы. Это обеспечивает большую устойчивость к факторам воздействия. Уменьшение регулирующего влияния на клетку извне может быть скомпенсировано за счет определенной автономизации ее внутриклеточных метаболических процессов по принципу положительной или отрицательной обратной связи (феномен самостимуляции и ауторецепции).

Программируемое снижение интенсивности всех клеточных обменных процессов в условиях нарастания гипоксии может быть также достигнуто посредством блокады генов, определяющих активность метаболических процессов в клетке (синтез белков ферментов). В результате этого процесса может развиться клеточная атрофия — уменьшение размеров клетки и числа функционирующих в ней структур при сохранении ее жизнеспособности.

При развитии гипоксии клетки саногенетическим механизмом компенсации нарушения энергосинтеза является активация анаэробного гликолиза. При снижении АТФ/АДФ+АМФ происходит активация фермента фосфофруктокиназы (ФФК) и переход гликолиза на анаэробный путь. Но в реализации этой саногенетической реакции заложен патологический элемент: накопления недоокисленного лактата (молочная кислота), которое в итоге приводит к внутриклеточному ацидозу и остановке анаэробного гликолиза за счет кислотного угнетения ФФК. Определенным саногенетическим механизмом защиты от энергодефицита является также включение в энергопереработку белка.

Как указывалось выше, одним из значимых механизмов повреждения клетки является разрушение мембран и энзимов клетки свободнорадикальными и перекисными реакциями. Для защиты от этого повреждающего воздействия у клетки сформирована специальная защитная (саногенетическая) система — антиоксидантная система. Антиоксиданты — не просто набор веществ, они способны восстанавливать друг друга и взаимодействовать между собой.

Описаны три компонента антиоксидантной системы:

1.Энзимы предупредительного действия, восстанавливающие радикал до неактивного состояния: а) супероксиддисмутаза (инактивирует радикалы кислорода), каталаза и глютатионпероксидаза (расщепляют перекиси водорода и липидов).

2.Ферменты — прерыватели цепной реакции, переводящие активные радикалы в перекись водорода, разрушаемую каталазой (фенолы: токоферол, амины: цистамин).

3.Хелаторы, способные связывать металлы-катализаторы свободнорадикальных реакций (унитиол).

Все упомянутые энзимы являются металлоферментами, так как в состав их активных центров входят микроэлементы (Zn, Si, Ma, Cu, Fe). Главные антиоксидантные субстраты клеток — это тиоловые соединения: глютатион, цистеин, Д-пеницилламин. Для поддержания необходимой активности антиоксидантной системы требуются не только микроэлементы, но и витамины. Так, для восстановления глютатиона нужны витамины РР и С. Кроме того, некоторые из них являются сами антиоксидантами, например, витамин Е сам «ловит» свободный электрон при инактивации липоперекисей.

Запуск антиоксидантной системы в попытке предохранить организм от окислительного удара (стресса) возможен через синтез макрофагами различной локализации (в ответ на появление в тканях интерлейкина-1 и ряда других медиаторов воспаления — эйкозаноидов), сывороточных белков (церулоплазмин, С-реактивный белок, гаптоглобин, амилоид А и т. д.), которые служат тиоловыми антиоксидантами.

Саногенетическим механизмом защиты от свободнорадикального окисления является не только выработка клеткой, но и поглощение ею извне множества антиоксидантов. Саногенетические программы синтеза клеточных антиоксидантов зависят не только от экспрессии генов, отвечающих за синтез белков-протекторов (белки глобулины острой фазы), но и от достаточного и своевременного поступления в клетку субстратов и незаменимых компонентов для этого синтеза. Кроме того, избыток активных кислородосодержащих радикалов (АКР) может секвестрироваться в пероксисомах.

При повреждении внутриклеточных мембран может развиться такая саногенетическая реакция, как лизосомальная аутофагия. Но, наряду с этим,наблюдается резкая активация внутриклеточных буферных систем для инактивации чрезмерной гидролитической активности лизосомальных энзимов. Важную роль в ликвидации патогенного агента и защите от его повреждающего действия на мембраны и ферменты клетки играют энзимы микросом эндоплазматической сети, обеспечивающие физико-химическую трансформацию патогенных факторов путем их окисления, восстановления, деметилирования и т. д. Но в определенных условиях эти ферменты: оксигеназы со смешанной функцией — «ОСФ-цитохром» (концом ферментативной цепочки является цитохром 450), могут сами стать причиной повреждения клетки, образуя активные продукты, разрушающие жизненноважные клеточные структуры (ДНК, РНК, белки, кофакторы). Они также могут генерировать образование супероксидных радикалов кислорода и перекиси водорода, которые вызывают острое токсическое повреждение клетки.


Рекомендуем почитать
Доктор, который одурачил весь мир. Наука, обман и война с вакцинами

Книга рассказывает о сенсационном разоблачение журналистом Sunday Times Брайном Диром бывшего британского врача Эндрю Джереми Уэйкфилда, получившего известность после сфальсифицированного исследования 1998 года, в котором ложно утверждалось о связи между вакциной против кори, эпидемического паротита и краснухи (MMR) и аутизмом, а также за его последующую.


Как очки убивают наше зрение

«Все «очкарики» – хронические больные, страдающие самыми разными недугами, а не только заболеваниями глаз» – убежден автор этой книги профессор-офтальмолог Олег Павлович Панков. Причина в том, что организм этих людей хронически недополучает ультрафиолет. Ведь только 20 % ультрафиолета человек получает через кожу, основные же 80 % воспринимаются через глаза. А глаза «очкариков» все время закрыты от солнца линзами. Кроме того больные глаза просто не в состоянии воспринимать ультрафиолет в необходимых количествах.


На ошибках учатся. Как не попасть в ловушку медицинских мифов

Не надо лечиться «на всякий случай» и попадать на удочку популярных медицинских мифов. В этом уверена Мария Евдокимова, потомственный врач, соучредитель первого в России медицинского центра, работающего по принципам доказательной медицины. Она развенчивает модные сегодня представления о том, как сохранить здоровье. Стоит ли верить всему, что пишут в интернете? Полагаться ли на Инста-докторов и как найти на самом деле знающего врача? К чему может привести бездумное применение витаминных добавок? Так ли страшен глютен, как им пугают? Можно ли пить молоко взрослым? Все о том, как без вреда сделать так, чтобы жить долго и отлично себя чувствовать, — профессионально, популярно, легко.


Взламывая анатомию

Наше тело — удивительная и сложная машина, все части которой работают слаженно, взаимодействуют с окружающей средой и даже учатся у нее.Эта книга подробно рассказывает об устройстве и работе тела, помогая понять, как развивались наши знания о нем. Она дает представление обо всех системах организма, объясняет медицинскую терминологию и отвечает на важнейшие вопросы. Дочитав до конца, вы заглянете не только в прошлое, настоящее и будущее, но и внутрь себя.


Чабрец против 100 болезней

Чабрец, тимьян, богородская трава. Издавна люди знали о поистине чудодейственных свойствах этого растения. С его помощью отгоняли злых духов, его цветами украшали иконы, им лечили множество болезней. Пришла пора вспомнить секреты древних знахарей. Если вы готовы принять помощь природы, эта книга для вас: чабрец излечит простуду и бронхит, утолит боль при радикулите и невралгии.


Заболевания желудка. Современный взгляд на лечение и профилактику

«Все сознают, что нормальная и полезная еда есть еда с аппетитом, всякая другая еда, еда по приказу, по расчету признается уже в большей или меньшей степени злом», — писал академик И. П. Павлов. Перед вами необычная книга. Главная ее особенность состоит в том, что желудок, его заболевания, а также их профилактика и лечение рассматриваются в «контексте» всего организма, в тесной связи с образом жизни и мыслями человека. Автор обращает внимание читателей на множество «мелочей», которым мы обычно не придаем никакого значения, не замечаем их влияния на состояние желудочно-кишечного тракта и здоровье в целом. Книга — не сухое повествование о болезнях, а увлекательное путешествие в мир под названием «человеческий организм». Для широкого круга читателей.