Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [9]
π/4 = 5∙arctg (1/7) + 2∙arctg (3/79).
Банкнота в 50 словенских толаров, на которой изображен Гэорг Вега, а также геометрические построения и фазы Луны. На обороте слева от изображения Солнечной системы можно увидеть фасад Словенской академии наук в Любляне.
Между 1760 и 1800 годами параллельно были получены заслуживающие упоминания результаты. Так, Иоганн Генрих Ламберт (1728–1777), создатель неевклидовой геометрии, в 1761 или 1767 году (точная дата неизвестна) доказал иррациональность числа π. Адриен Мари Лежандр (1752–1833) несколькими годами позже показал, что π>2 также иррационально. Возможно, наиболее значимым является достижение великого Леонарда Эйлера (1707–1783), который искал многочисленные ряды для вычисления π и предположил, что число π является трансцендентным. Гипотеза Эйлера тем примечательнее, что само существование трансцендентных чисел доказал Жозеф Лиувилль (1809–1882) лишь много лет спустя, в 1840 году! Лиувилль также нашел первое трансцендентное число.
ИОГАНН ГЕНРИХ ЛАМБЕРТ (1728–1777)
Этот немецкий математик, астроном и врач изобрел гигрометр и фотометр. Он также первым доказал иррациональность числа тс, но этим его вклад в математику не ограничивается. Он изучал гиперболические функции и связал их с неевклидовой геометрией. Также он внес заметный вклад в картографию, и его имя носит одна из географических проекций. Ламберт был самоучкой, но когда речь заходила о признании его собственных заслуг, скромность покидала его. Фридрих II, сделав математика членом Прусской академии наук, спросил Ламберта, в каких же науках он преуспел. «Во всех», — последовал ответ, близкий к истине. Король с иронией заметил: «Значит, вы разбираетесь и в математике?» — «И в ней тоже», — честно ответил Ламберт. Несколько раздосадованный, Фридрих II продолжил: «И кто же был вашим учителем?» — «Я сам, Ваше Величество!» — и снова Ламберт не погрешил против истины. Король иронично сказал: «Ну и ну! Я стою перед вторым Паскалем!» — «По меньшей мере», — был ответ. Его доказательство иррациональности числа тс достаточно изобретательно и доступно для понимания. С помощью цепных дробей Ламберт показал (это наиболее сложная часть его доказательства), что если х — ненулевое рациональное число, то tg х иррационально. Так как tg π/4 = 1, а единица является рациональным числом, следовательно, π/4 и π являются иррациональными.
* * *
Говоря о вычислении π, мы специально не упоминаем об Эйлере, так как он никогда не добивался рекордной точности вычислений. Вероятно, это случилось лишь потому, что он не уделял этому достаточно внимания: как-то раз, используя формулы Мэчина, он вычислил 20 знаков π всего за час!
В 1841 году Уильям Резерфорд (1798–1871) использовал формулу Мэчина
π/4 = 4∙arctg (1/5) — arctg (1/79) + arctg (1/99).
и получил 208 знаков π, из которых 152 были верными. В 1853 году он вернулся к этой задаче и с помощью формулы Мэчина установил новый рекорд — 440 знаков.
ЧТО ТАКОЕ ТРАНСЦЕНДЕНТНОЕ ЧИСЛО?
Число называется алгебраическим, если оно является корнем многочлена
a>nx>n + a>n-1x>n-1 +… + a>1x + a>0
все коэффициенты которого а>n, а>n-1…., a>1, а>0 являются рациональными числами. В высшей математике доказывается, что любое число, которое можно получить, используя лишь циркуль и линейку конечное число раз, обязательно является алгебраическим. Неалгебраическое число называется трансцендентным. Таким образом» очевидно, что трансцендентное число нельзя получить построением с помощью циркуля и линейки.
* * *
Иоганн Мартин Захариус Дазе (1824–1861) занимает особое место в истории математики. Его друг Шульц фон Штрасницкий (1803–1852) показал ему следующую формулу Мэчина:
π/4 = arctg (1/2) + arctg (1/5) + arctg (1/8).
и в 1844 году Дазе вычислил с ее помощью 200 знаков π. Невероятно, но на это ему потребовалось лишь два месяца, и все расчеты он производил в уме. Он был настоящим человеком-компьютером и обладал невероятной способностью к вычислениям. Сам Гаусс, известнейший математик своего времени, советовал властям использовать Дазе для расчетов. Была учреждена премия, вручаемая тому, кто получит список делителей чисел N таких, что 7 000 000 < N < 10 000 000. Дазе начал работать над этой задачей, но смерть помешала ему найти решение. Дазе страдал синдромом саванта: он был поразительно одарен в математике, имел невероятную память, но в остальном был весьма и весьма средних способностей. Например, он мог перемножить два восьмизначных числа меньше чем за минуту. Для перемножения 100-значных чисел ему требовалось около девяти часов. Он обладал почти фотографической памятью, что позволяло ему с удивительной точностью пересчитывать любые предметы, будь то овцы, буквы или костяшки домино. Писатель и ученый Артур Кларк в письме к палеонтологу Стивену Джею Гулду задавался вопросом, какую пользу для эволюции биологического вида может иметь способность вычислить в уме 200 знаков числа π. Ответ на этот вопрос нам неизвестен.
В 1847 году датский астроном и математик-самоучка Томас Клаусен (1801–1885), используя две формулы Мэчина:
(1/4)∙π = 2∙arctg (1/3) + arctg (1/7),
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В очередном, двадцать втором сборнике «Пути в незнаемое» читатель встретится, как всегда, с очерками из разных областей науки: экономики, биологии, физики, истории, литературоведения и т. д. Среди авторов этого сборника известные писатели — Ю. Карякин, Н. Шмелев, О. Чайковская и другие.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
«Игра престолов» — один из самых популярных и культовых сериалов последних лет. От него невозможно оторваться, но иногда возникают вопросы: «Неужели так может быть на самом деле?» или «Как они это вообще сделали?». Что представляют собой драконы с точки зрения современной физики и биологии? Как сделать меч из валирийской стали? Почему дикий огонь столь страшен в качестве оружия? Об этом захотят узнать не только фанаты сериала, но и простые зрители.
В этой небольшой книге автор так осветил все основные разделы современного естествознания, чтобы их понял читатель, лишенный всякой специальной подготовки. Благодаря упрощениям автора, основанным на знании конкретной взаимосвязи всех явлений природы, читатель легко поймет содержание книги. Цель книги состоит в том, чтобы дать общий беглый очерк современных научных представлений о явлениях природы, показать универсальность этих представлений и их значение для человека.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Данная книга посвящена древним мегалитическим сооружениям и другим памятникам Земли, с которыми связано множество легенд, мифов и интересных гипотез. Читателей ждут встречи с такими загадочными сооружениями, как изваяния острова Пасхи, каменные шары Коста-Рики, Стоунхендж, Мохенджо-Даро, этрусские саркофаги, Парфенон, Гугун и т.д.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.