Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [7]

Шрифт
Интервал

Виллеброрд Снелл (1580–1626), печатавшийся под латинизированным именем Снеллиус, прежде всего известен как первооткрыватель законов преломления света. Он также пробовал вычислить число π и рассчитал 35 его знаков, опубликованных в 1621 году в книге Cyclometricus. Он использовал ощутимо более точный способ по сравнению с методом Архимеда. Правильность расчетов Снелла позднее подтвердил великий Христиан Гюйгенс (1629–1695).

В 1630 году астроном Христоф Гринбергер (1561–1636), австрийский иезуит, установил новый рекорд, дойдя в расчетах до 39-го знака. Потомки достойно увековечили его память: его имя носит один из лунных кратеров. Нельзя представить лучшее вознаграждение для астронома и для того, чей сан священника не позволял принимать мирские подношения.


Большой скандал и открытие математического анализа

Готфрид Лейбниц и Исаак Ньютон обессмертили свои имена, создав анализ бесконечно малых величин — кошмар для многих студентов, видящих в этой дисциплине лишь нагромождение интегралов и производных. Лейбниц и Ньютон достигли математического рая: им удалось «приручить» бесконечность, более того, показать, как перейти от конечного к бесконечному и вернуться обратно, принеся с собой нужные результаты. Многие, подобно проницательному и мечтательному Архимеду, ступали на этот путь. Лейбниц и Ньютон смело прошли по нему и показали входы и выходы лабиринта, в котором скрывалось неизведанное.

Степенные ряды и интегралы — результат применения приемов анализа в математике. Расчет числа π перестал заключаться в механическом измерении многоугольников и стал математической задачей, требующей работы «маленьких серых клеточек», как говорил знаменитый сыщик Эркюль Пуаро.

Далее мы не будем упоминать об ученых Востока, занимавшихся вычислением π, за исключением случаев, когда им удавалось рассчитать π с крайне большой точностью или использовать оригинальные передовые методы.


ГОТФРИД ВИЛЬГЕЛЬМ ЛЕЙБНИЦ (1646–1716)

Коротко изложить самые важные достижения столь разностороннего ученого, как Лейбниц, далеко не просто. Достаточно упомянуть, что полное собрание его сочинений насчитывает 25 томов и 200000 страниц. Этот исключительный ученый родился в Лейпциге. Он занимался адвокатурой, дипломатией, математической логикой, религией, историографией, а также востоковедением, двоичной арифметикой, этикой, физикой, биологией, инженерным делом. Возможно, важнейшим его вкладом в науку является интегральное исчисление и анализ бесконечно малых.

Лейбниц был вундеркиндом, много читал и схватывал все на лету, жил, не стесняясь в средствах, зарабатывая юриспруденцией и дипломатией. Он участвовал в создании первого в истории научного журнала Acta Eruditorum, в котором публиковались многие, если не все его исследования и открытия.

Ему был присущ дар метко обозначать вещи. Так, именно ему мы обязаны введением знака интеграла 

и дифференциала (), а также многих выражений, например «жизненная сила». Часть его жизни прошла в спорах с приверженцами Ньютона (за которыми стоял сам великий Ньютон) о том, кто же является подлинным автором исчисления. Сегодня считается, что и Ньютон, и Лейбниц совершили свои открытия независимо друг от друга, а совпадение по времени является случайным. Как математик Лейбниц также внес очень важный вклад в математическую логику, теорию автоматов, двоичную систему счисления и топологию, которую сам ученый называл analysis situs.



В 1673 году Лейбниц изобрел счетную машину, способную производить четыре основных арифметических действия. Годом позже он построил первый работающий образец.

* * *

Ньютон и Лейбниц на протяжении долгого времени вели спор о том, кому же принадлежит авторство исчисления, и можно сказать, что этот спор в итоге вылился в скандал. Не будем вдаваться в суть спора и сосредоточимся на его итогах.

Около 1666 года, в разгар Великого Лондонского пожара сэр Исаак Ньютон, казалось, прохлаждался без работы, поскольку год спустя он говорил, что занялся вычислением числа π «оттого, что тогда мне было решительно нечем заняться». Оставим в стороне мотивы, которыми он руководствовался, и рассмотрим суть его расчетов. Ньютон использовал биномиальную формулу и открыл ряд



с помощью которого точно вычислил 16 знаков π. Как и во многих других случаях, Ньютон не придал этому большого значения и не упомянул об этом ни в одной из своих книг. Этот результат был опубликован после его смерти.

Следовать по пути гения всегда интересно. Проследуем путем, который прошел Ньютон.



Площадь выделенного на рисунке сектора равна π/24, так как он равен одной шестой части окружности. Если вычесть площадь треугольника, равную √(3/32), то получим площадь части сектора, обозначенной 5. Уравнение окружности, показанной на рисунке, выглядит так:

у>2 + х>2 = х,


СЭР ИСААК НЬЮТОН (1642–1727)

Ньютон больше известен как физик и математик, хотя он занимался алхимией, богословием, политикой, астрономией и, естественно, многими другими дисциплинами. В любом случае он является одним из важнейших ученых в истории человечества.

Его основной труд Philosophiae naturalis principia mathematica («Математические начала натуральной философии») был издан в 1687 году главным образом благодаря влиянию родных, что говорит о том, насколько замкнутым и необщительным был Ньютон. В этой книге описываются его важнейшие открытия: закон всемирного тяготения (по легенде, Ньютон открыл этот закон после того, как ему на голову упало яблоко) и исчисление бесконечно малых. Среди его достижений в физике в первую очередь стоит отметить создание теории цветов и дифракции, первого зеркального телескопа и корпускулярной теории света. Он также сформулировал законы сохранения импульса и энергии. В его работах по астрономии удивительно точно описано движение планет и природа их орбит. В чистой математике помимо дифференциального и интегрального исчисления он также изучал множество степенных рядов, формулу бинома, теорию ошибок и численный метод нахождения нулей функции.


Еще от автора Хоакин Наварро
Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.


Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.