Руководство по стандартной библиотеке шаблонов (STL) - [2]

Шрифт
Интервал

>main(int argc, char** argv) {

> if (argc!= 2) throw("usage: remove_if_divides integer\n ");

> remove_copy_if(istream_iterator‹int›(cin), istream_iterator‹int›(), ostream_iterator‹int›(cout, "\n"),  not1(bind2nd(modulus‹int›(), atoi(argv[1]))));

>}

Вся работа выполняется алгоритмом remove_copy_if, который читает целые числа одно за другим, пока итератор ввода не становится равным end-of-stream (конец-потока) итератору, который создаётся конструктором без параметров. (Вообще все алгоритмы работают способом "отсюда досюда", используя два итератора, которые показывают начало и конец ввода.) Потом remove_copy_if записывает целые числа, которые выдерживают проверку, в выходной поток через итератор вывода, который связан с cout. В качестве предиката remove_copy_if использует функциональный объект, созданный из функционального объекта modulus‹int›, который берёт i и j и возвращает i % j как бинарный предикат, и превращает в унарный предикат, используя bind2nd, чтобы связать второй параметр с параметром командной строки atoi(argv[1]). Потом отрицание этого унарного предиката получается с помощью адаптера функции not1.

Несколько более реалистичный пример - фильтрующая программа, которая берёт файл и беспорядочно перетасовывает его строки.

>main(int argc, char**) {

> if (argc!= 1) throw("usage: shuffle\n");

> vector‹string› v;

> copy(istream_iterator‹string›(cin), istream_iterator‹string›(), inserter(v, v.end()));

> random_shuffle(v.begin(), v.end());

> copy(v.begin(), v.end(), ostream_iterator‹string›(cout));

>}

В этом примере copy перемещает строки из стандартного ввода в вектор, но так как вектор предварительно не размещён в памяти, используется итератор вставки, чтобы вставить в вектор строки одну за другой. (Эта методика позволяет всем функциям копирования работать в обычном режиме замены также, как в режиме вставки.) Потом random_shuffle перетасовывает вектор, а другой вызов copy копирует его в поток cout.

Требования

Для гарантии совместной работы различные компоненты библиотеки должны удовлетворять некоторым основным требованиям. Требования должны быть общими, насколько это возможно, так что вместо высказывания "класс X должен определить функцию-член operator++() ", мы говорим "для любого объекта x класса X определён ++x ". (Не определено, является ли оператор членом или глобальной функцией.) Требования установлены в терминах чётких выражений, которые определяют допустимые условия типов, удовлетворяющих требованиям. Для каждого набора требований имеется таблица, которая определяет начальный набор допустимых выражений и их семантику. Любой обобщённый алгоритм, который использует требования, должен быть написан в терминах допустимых выражений для своих формальных параметров.

Если требуется, чтобы была операция линейного времени сложности, это значит - не хуже, чем линейного времени, и операция постоянного времени удовлетворяет требованию.

В некоторых случаях мы представили семантические требования, использующие код C++. Такой код предназначен как спецификация эквивалентности одной конструкции другой, не обязательно как способ, которым конструкция должна быть реализована (хотя в некоторых случаях данный код, однозначно, является оптимальной реализацией).

Основные компоненты

Этот раздел содержит некоторые основные шаблонные функции и классы, которые используются в остальной части библиотеки.

Операторы (Operators)

Чтобы избежать избыточных определений operator!= из operator== и operator›, ‹=, ›= из operator‹, библиотека обеспечивает следующее:

>template ‹class Tl, class T2›

>inline bool operator!=(const T1& x, const T2& y) {

> return !(x == y);

>}


>template ‹class Tl, class T2›

>inline bool operator›(const T1& x, const T2& y) {

> return y ‹ x;

>}


>template ‹class Tl, class T2›

>inline bool operator‹=(const T1& x, const T2& y) {

> return !(y ‹ x);

>}


>template ‹class Tl, class T2›

>inline bool operator›=(const T1& x, const T2& y) {

> return !(x ‹ y);

>}

Пара (Pair)

Библиотека включает шаблоны для разнородных пар значений.

>template ‹class T1, class T2›

>struct pair {

> T1 first;

> T2 second;

> pair() {}

> pair(const T1& x, const T2& y): first(x), second(y) {}

>};


>template ‹class T1, class T2›

>inline bool operator==(const pair‹Tl,T2›& x, const pair‹Tl,T2›& y) {

> return x.first == y.first && x.second == y.second;

>}


>template ‹class T1, class T2›

>inline bool operator‹(const pair‹Tl,T2›& x, const pair‹Tl,T2›& y) {

> return x.first ‹ y.first || (!(y.first ‹ x.first) && x.second ‹ y.second);

>}

Библиотека обеспечивает соответствующую шаблонную функцию make_pair, чтобы упростить конструкцию пар. Вместо выражения, например:

>return pair‹int, double›(5, 3.1415926); // явные типы,

можно написать

>return make_pair(5, 3.1415926); // типы выводятся.


>template ‹class Tl, class T2›

>inline pair‹Tl,T2› make_pair(const T1& x, const T2& y) {

> return pair‹Tl,T2›(x, y);

>}

Итераторы

Итераторы - это обобщение указателей, которые позволяют программисту работать с различными структурами данных (контейнерами) единообразным способом. Чтобы создать шаблонные алгоритмы, которые правильно и эффективно работают с различными типами структур данных, нам нужно формализовать не только интерфейсы, но также семантику и предположения сложности итераторов. Итераторы - это объекты, которые имеют operator*, возвращающий значение некоторого класса или встроенного типа T, называемого


Рекомендуем почитать
Изучаем Java EE 7

Java Enterprise Edition (Java EE) остается одной из ведущих технологий и платформ на основе Java. Данная книга представляет собой логичное пошаговое руководство, в котором подробно описаны многие спецификации и эталонные реализации Java EE 7. Работа с ними продемонстрирована на практических примерах. В этом фундаментальном издании также используется новейшая версия инструмента GlassFish, предназначенного для развертывания и администрирования примеров кода. Книга написана ведущим специалистом по обработке запросов на спецификацию Java EE, членом наблюдательного совета организации Java Community Process (JCP)


Геймдизайн. Рецепты успеха лучших компьютерных игр от Super Mario и Doom до Assassin’s Creed и дальше

Что такое ГЕЙМДИЗАЙН? Это не код, графика или звук. Это не создание персонажей или раскрашивание игрового поля. Геймдизайн – это симулятор мечты, набор правил, благодаря которым игра оживает. Как создать игру, которую полюбят, от которой не смогут оторваться? Знаменитый геймдизайнер Тайнан Сильвестр на примере кейсов из самых популярных игр рассказывает как объединить эмоции и впечатления, игровую механику и мотивацию игроков. Познакомитесь с принципами дизайна, которыми пользуются ведущие студии мира! Создайте игровую механику, вызывающую эмоции и обеспечивающую разнообразие.


Обработка событий в С++

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


MFC и OpenGL

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Симуляция частичной специализации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.