Ритм Вселенной. Как из хаоса возникает порядок - [91]

Шрифт
Интервал

В отличие от хаотических систем, ритмические системы не демонстрируют столь высокой чувствительности к слабым возмущениям. Щелкните пальцем по метроному – и он на мгновение остановится, а затем возобновит свои неумолимые тик-так. Он, конечно, собьется с первоначального ритма, но образовавшееся отклонение не будет нарастать с течением времени. Этот феномен можно представить более отчетливо, если мы вообразим два идентичных метронома, которые поначалу работали синхронно. Ударьте слегка пальцем один из них; после того как он возобновит ход, он начнет отставать от другого метронома на некий фиксированный интервал времени, причем это отставание не будет нарастать с течением времени. Вообще говоря, если слегка воздействовать на какую-либо нехаотическую систему, то это воздействие либо совсем не будет нарастать, либо будет нарастать очень умеренно, причем это нарастание будет пропорционально времени, которое прошло с момента воздействия. В таких случаях говорят, что ошибки нарастают во времени не быстрее, чем по линейному закону.

Важным моментом здесь является количественный момент. Линейный рост ошибок предполагает, что нехаотические системы ведут себя предсказуемо, по крайней мере в принципе. Приливы и отливы, возвращение кометы Галлея, моменты наступления затмений – все эти явления строго ритмичны и, следовательно, предсказуемы, поскольку слабые возмущения не перерастают со временем в большие ошибки прогнозирования. Чтобы предсказать поведение нехаотической системы на вдвое более продолжительном отрезке времени, вы должны в два раза точнее измерить ее начальное состояние. Чтобы ваш прогноз распространялся на отрезок времени, втрое более продолжительный, вы должны измерить начальное состояние системы в три раза точнее. Иными словами, горизонт предсказуемости также увеличивается по линейному закону, то есть прямо пропорционально точности, с которой определяется начальное состояние системы.

Хаотические системы, однако, ведут себя совершенно по-другому. Именно в хаотических системах мы начинаем ощущать по-настоящему деморализующие последствия «эффекта бабочки». Протяженность времени, которое может охватывать более или менее точный прогноз состояния хаотической системы, зависит от трех факторов: допустимой погрешности нашего прогноза, точности измерения исходного состояния хаотической системы и неподконтрольного нам масштаба времени, называемого временем Ляпунова[188][189], которое зависит от динамики, внутренне присущей самой этой системе.

Грубо говоря, наш прогноз может охватывать лишь время, соизмеримое с временем Ляпунова; после этого ошибки измерения истинного исходного состояния разрастаются до такой степени, что превышают допустимый порог погрешности. Снижая используемые стандарты или повышая точность измерения исходного состояния, мы всегда можем охватить своим прогнозом более продолжительные интервалы времени. Однако проблема заключается в жесткой зависимости «горизонта предсказуемости» от точности измерения исходного состояния: если вы хотите увеличить горизонт предсказуемости в два раза, не потеряв при этом в точности, то усилия, которые вам придется затратить для этого, должны возрасти не в два, а в десять раз. Если же вы ставите перед собой еще более амбициозные цели и хотите увеличить горизонт предсказуемости в три раза (при сохранении той же точности), то усилия, которые вам придется затратить для этого, возрастут в сто раз; четырехкратное увеличение горизонта предсказуемости будет стоить вам тысячекратных усилий и т. д. В любой хаотической системе требуемая точность начального измерения возрастает по экспоненциальному, а не линейному закону.

Необходимость выполнения подобного условия не внушает оптимизма. На практике это означает, что ваш горизонт предсказуемости вряд ли удастся сделать большим, чем n, умноженное на время Ляпунова, причем n должно быть очень малым числом. В данном случае точность ваших измерительных приборов не имеет значения. Время Ляпунова задает горизонт, за пределами которого приемлемое предсказание становится невозможным. В случае хаотической электрической цепи такой горизонт составляет примерно тысячную долю секунды; когда речь идет о прогнозах погоды, точную величину горизонта указать невозможно, но примерно он может равняться двум-трем дням; а в случае Солнечной системы он составляет пять миллионов лет.

Столь внушительная протяженность горизонта в случае Солнечной системы[190] обусловливает то, что сегодня мы можем с высокой точностью предсказывать движения планет; в масштабах человеческой жизни или даже истории астрономии в целом эти движения действительно предсказуемы. Когда мы вычисляем, какими были относительные положения планет сто лет назад или какими они будут через сто лет, наши предсказания вполне достоверны. Однако у нас нет никаких оснований доверять прогнозам, касающимся относительного положения планет 4 миллиарда лет тому назад, в момент зарождения жизни на Земле.

Последним нюансом, касающимся хаоса, является странный вид порядка, скрывающегося за этим хаосом. Хаос не есть нечто бесформенное (вопреки, как было сказано выше, обыденному смыслу этого слова). Скрытый смысл структуры, лежащей в основе хаоса, проявляется в работе действующего макета водяного колеса с его бесконечной последовательностью вращений то в ту, то в другую сторону; несмотря на то что эта последовательность никогда не повторяется в деталях, в целом ее характер остается одним и тем же. В хаосе заложена некая сущность – качество, которое никогда не изменяется.


Еще от автора Стивен Строгац
Бесконечная сила

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.


Удовольствие от Х. Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мире

Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.