Пятьсот двадцать головоломок - [87]
441. Пусть 8 делений разбивают 33-сантиметровую линейку на 9 частей длиной 1, 3, 1, 9, 2, 7, 2, 6, 2 см. Тогда с их помощью можно измерить любое целое число сантиметров от 1 до 33 см. Разумеется, сами деления находятся на расстояниях 1, 4, 5, 14, 16, 23, 25 и 31 см от одного из концов линейки. Другим решением будет 1, 1, 1, 1, 6. 6, 6, 6, 5 см.
Эта головоломка имеет по крайней мере 16 решений. Я нашел правило, с помощью которого можно определять минимальное число делений для линеек любой длины и выписывать некоторые решения, однако общий закон, которому подчиняются все решения, еще не найден.
[Хотя общего правила не найдено до сих пор, все же с того момента, как Дьюдени поставил эту задачу, отмечен существенный прогресс. Обнаружено, что восьми делений достаточно также и для линейки в 36 см. — М. Г.]
442. Если расположить коттеджи по кругу через промежутки 1, 1, 4, 4, 3, 14 км, то для любого целого числа километров от 1 до 26 включительно найдутся два коттеджа, отстоящие друг от друга на такое расстояние.
[Эта задача, очевидно, представляет собой разновидность предыдущей. Как и ранее, Дьюдени мог бы увеличить длину «линейки» (в нашем случае — дороги), не меняя остальных условий задачи. Оказывается, что 6 коттеджей можно расположить на круглой дороге в 31 км таким образом, чтобы любое целое расстояние от 1 до 30 км совпадало с расстоянием по кругу между некоторой парой домов. Нетрудно заметить, что для п домов максимальнее число различных способов измерения расстояний между ними равно n(n - 1). Для n = 6 мы получаем 30; следовательно, в этом случае можно расположить 6 домов на дороге в 31 км так, чтобы ни одно из расстояний между парами домов не повторялось. Точно так же оптимальные решения можно получить и в случае n = 1, 2, 3, 4 или 5. См. решение задачи Е176 Михаелем Гольдбергом, приведенное в журнале American Mathematical Monthly, September 1966, p. 786. — M. Г.]
443. Существует 9 основных решений, представленных на рисунке. Решение A — это то самое решение, которое давалось при формулировке задачи. Из данных 9 решений D, E и J порождают по 8 решений каждое с помощью поворотов и отражений, как объяснялось ранее, а остальные дают только по 4 решения каждое. Следовательно, всего существует 48 различных решений данной головоломки.
Читателю, быть может, будет небезынтересно узнать, что на шахматной доске 8 × 8 пять фишек можно расположить вдоль прямой при тех же самых условиях четырьмя основными способами, порождающими 20 различных решений.
444. Три мухи переменили позицию, как показано стрелками на рисунке, и при этом никакие две мухи не оказались на одной прямой.
445. Если бы у Пилкинса было 11 клерков, а у Рэдсона 12, то они могли бы сесть за стол 165 и 495 способами соответственно, что как раз и являлось бы решением задачи. Однако нам известно, что у той и другой фирмы клерков было поровну. Следовательно, ответом будет 15 клерков, садившихся по трое в течение 455 дней, и 15 клерков, садившихся по четыре в течение 1365 дней.
446. В первом случае существует 88 200 способов. Есть один простой метод, с помощью которого можно получить ответ, но объяснение его потребовало бы слишком много места. Во втором случае ответ уменьшается до 6300 способов.
447. Удалите первую плитку в каждом горизонтальном ряду. Тогда из оставшихся 16 плиток можно сложить квадрат, показанный на рисунке, в точном соответствии с заданными условиями.
448. Если вы попытались, как это часто делают, сначала расставить по местам все 6 экземпляров одной буквы, затем все 6 экземпляров другой и т. д., то обнаружите, что, расположив по 6 экземпляров каждой из четырех букв, можно еще разместить только по 2 экземпляра оставшихся двух букв, так что получится диаграмма, изображенная слева. Секрет заключается в том, чтобы заполнить клетки 6 экземплярами каждой из первых двух букв и пятью экземплярами каждой из остальных четырех букв; при этом получится вторая диаграмма, изображенная справа, только с четырьмя свободными клеточками.
449. Расположите 10 бочек следующими двумя способами, и сумма номеров вдоль каждой из сторон даст 13 — наименьшее возможное число:
Меняя положение номеров (но не сами номера) на каждой из сторон, мы получим по 8 решений в каждом случае, если не будем различать решения, получающиеся друг из друга поворотами и отражениями.
450. С тремя красными, белыми или зелеными лампами мы можем получить по 15 различных комбинаций (45). С одной красной и двумя белыми мы также можем получить 15 комбинаций, и при каждой из них имеется еще по 3 комбинации порядка цветов; всего 45 комбинаций. То же самое получится с одной красной и двумя зелеными, одной белой и двумя красными, одной белой и двумя зелеными, одной зеленой и двумя белыми, одной зеленой и двумя красными лампами (270). С одной красной, одной белой и одной зеленой лампами мы можем получить 6 раз по 15 комбинаций (90). С двумя красными, двумя белыми или двумя зелеными мы можем получить по 7 комбинаций (21). С одной красной и одной белой, или одной красной и одной зеленой, или одной белой и одной зеленой лампами мы можем получить по 14 комбинаций (42). С помощью только одной лампы мы можем послать всего по 1 сигналу (3). Теперь сложите числа в скобках, и вы получите ответ — 471 сигнал.
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.