Пятьсот двадцать головоломок - [89]

Шрифт
Интервал

460. Шансы на выигрыш у Мэйсона — один из шести. Если бы Джексон назвал числа 8 и 14, то его шансы на успех сравнялись бы с шансами Мэйсона.

461. Первый игрок (A) всегда может выиграть, но для этого он должен начинать с 4. Во время игры нужно последовательно набирать такие суммы очков: 4, 11, 17, 24, 30, 37. Ниже приводятся три партии. В первой из них второй игрок (B) оттягивает насколько возможно свое поражение. Во второй игре он не дает A набрать ни 17, ни 30, но последнему удается набрать 24 и 37. В третьей игре B не дает A набрать ни 11, ни 24, но последний набирает 17, 30 и 37. Обратите внимание на важные ходы 3 и 5.

АBАВАВ
41(a)4141
31(b)3134
(11)21(11)23(d)(17)51
(17)51(c)5134
32(24)43(e)(30)5(f)1
(24)125131
(30)41(37)4(37)2
32
(37)1

(a) В противном случае A следующим ходом наберет 11 очков. (b) B не может помешать A набрать 11 или 17 очков на следующем ходе. (c) Снова для того, чтобы не дать A немедленно набрать 24 очка. (d) Чтобы не дать A набрать 17 очков, но при этом A удается набрать 24. (e) B мешает A набрать 30 очков, но не может помешать ему набрать 37. (f) Таким образом, A всегда может набрать 24 (как в предыдущей игре) или 30 очков (как в данной), причем в любом случае ему удается набрать 37 очков.

462. Если не учитывать нехватку карт, то серия очков, ведущая к победе, имеет вид 7, 12, 17, 22. Если вы сумеете набрать 17 и оставить при этом по крайней мере по одной 5-очковой паре обоих видов (4—1, 3—2), то вы должны выиграть. Если вы сумеете набрать 12 и оставить по две 5-очковые пары обоих видов, то вы должны выиграть. Если вы сумеете набрать 7 и оставить по три 5-очковые пары обоих видов, то вы должны выиграть. Так, если первый игрок пойдет 3 или 4, вы пойдете на 4 или 3 и наберете 7. Теперь уже ничто не сможет помешать второму игроку набрать 12, 17 и 22. На первый ход с 2 можно всегда ответить 3 или 2. Так, например, 2—3, 2—3, 2—3, 2—3 (20), и, поскольку не осталось 2, второй игрок выигрывает. Если ход игры был 2—3, 1—3, 3—2, 3—2 (19), то второй игрок выигрывает. Если 2—3, 3—4 (12) или 2—3, 4—3 (12), то снова выигрывает второй игрок. Исследование защиты 2—2 я оставляю читателю. Самым лучшим вторым ходом первого игрока будет 1.

Первый игрок сможет всегда выиграть только в случае, если он пойдет с 1. Вот примерные партии: 1—1, 4—1, 4—1, 4(16) — выигрывает; 1—3, 1—2, 4—1, 4—1, 4 (21) — выигрывает; 1—4, 2 (7) — выигрывает; 1—2, 4 (7) — выигрывает.

463. Мне следует пойти на MN. Мой противник может пойти на HL, тогда я отвечу ходом на CD. (Если бы он пошел на CD, то я ответил бы HL, и позиции оказались бы одинаковыми.) Самое лучшее, что он может теперь сделать, это пойти на DH (выиграв одно очко), но, поскольку он вынужден снова ходить, я выигрываю оставшиеся восемь квадратов.

464. Первый игрок всегда может выиграть. Он должен перевернуть третью карту от любого конца, при этом получится расположение: 00.0000000. Далее, чтобы ни делал второй игрок, первый может всегда получить либо 000.000, либо 00.00.0.0, либо 0.00.000 (порядок групп не играет роли). В первом случае, что бы ни делал второй игрок с одним из триплетов, первый игрок повторяет то же самое на другом триплете до тех пор, пока не перевернет последнюю карту. Во втором случае первый игрок повторяет аналогичным образом действия своего противника и выигрывает. В третьем случае, что бы ни делал второй игрок, первый всегда может добиться расположения 0.0, или 0.0.0.0, или 00.00 и, очевидно, выигрывает.

[Первый игрок может также выиграть, перевернув сначала вторую или четвертую карту от любого конца. — М. Г.]

465. На рисунке показано, как следует расположить костяшки, домино, чтобы сумма в каждой из строк равнялась 10. Приведите все дроби к общему знаменателю 60. Тогда сумма всех числителей должна равняться 1800, или по 600 в каждой строке, чтобы получилось 10. Выбор и расположение костяшек требуют небольшого размышления и изобретательности.

466. Четыре костяшки, изображенные на рисунке, удовлетворяют нашим условиям. Можно обнаружить, что, суммируя группы очков, непосредственно прилегающие друг к другу, удается получить любое число от 1 до 23 включительно.

[Решение Дьюдени было улучшено. Цепочка из четырех костяшек 1—3, 6—6, 6—2, 3—2 позволяет получить все числа от 1 до 29. Кроме того, оказывается, с помощью трех костяшек 1—1, 4—4, 4—3 можно получить любое число от 1 до 17. — М. Г.]

467. Приведенный рисунок не требует пояснений. Восемнадцать костяшек образуют квадрат, и ни в одной из строк или столбцов одно и то же число ие повторяется дважды. Разумеется, существуют и другие решения.

468. На нашем рисунке приведено правильное решение. Костяшки приложены друг к другу согласно обычному правилу, сумма очков в каждом луче равна 21, а в центре расположены числа 1, 2, 3, 4, 5, 6 и две пустышки.

469. На рисунке показано одно из решений. Цепочка костяшек разорвана на 4 части по 7 штук, а сумма очков в каждой части равна 22.

470. На рисунке показано правильное решение: два квадрата, составленные из пустышек, находятся внутри. Если бы в приведенном ранее примере не все числа находились на границе, то нужно было бы просто поменять местами отсутствующее число и пустышки. Так что в этом случае не было бы никакой головоломки. Однако, поскольку все числа присутствовали на границе, таким простым маневром обойтись не удалось.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Кентерберийские головоломки

Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.