Пятьсот двадцать головоломок - [92]
Если бы мы сумели найти 4 куска, содержащие всего 9 звеньев, то сэкономили бы на этом еще 3 цента, но это сделать невозможно так же, как невозможно найти 5 кусков, содержащих 8 звеньев, и т. д. Следовательно, стоимость ремонта составит 30 центов.
499. Прибавьте IV, перевернутое «вверх ногами», к VI, и вы получите XI.
500. Каждый год, делящийся на 4, является високосным, за исключением тех лет, которые делятся на 100; из этих последних високосными будут только те, которые делятся на 400, а остальные не являются високосными. Обычно это обстоятельство упускают из виду. Так, 1800 г. не был високосным, не был им и 1900 г.; однако 2000, 2400, 2800 гг. и т. д. будут високосными. Первым днем нашего века был вторник 1 января 1901 г.
В нашем веке всего 25 високосных лет, поскольку 2000 г. високосный. Следовательно, он содержит 36 525 (365 × 100 + 25) дней, или 5217 недель и 6 дней; поэтому 1 января 2001 г. наступит на 6 дней позднее вторника, то есть придется на понедельник. Век, начинающийся 1 января 2001 г., будет содержать только 24 високосных года, поскольку 2100 г. невисокосный, и 1 января 2101 г. наступит на 5 дней позднее понедельника, то есть в субботу, поскольку в этом веке будет 5217 недель и только 5 лишних дней. Теперь нам удобно представить результаты в виде таблицы:
1 января 1901 г. — Вторник
1 января 2001 г. — Понедельник. На 6 дней позже (2000 г. високосный)
1 января 2101 г. — Суббота. На 5 дней позже
1 января 2201 г. — Четверг. На 5 дней позже
1 января 2301 г. — Вторник. На 5 дней позже
1 января 2401 г. — Понедельник. На 6 дней позже (2400 г. високосный)
Таким образом, мы видим, что первые дни последовательных веков циклически повторяются в порядке: вторник, понедельник, суббота, четверг; поэтому они никогда не придутся на воскресенье, среду или пятницу.
501. Прежде чем склеивать концы полоски, поверните один из них на пол-оборота так, чтобы кольцо оказалось перекрученным. Тогда муха сможет проползти через все квадраты, не перейдя через край бумаги, поскольку, как это ни странно, у полученного кусочка бумаги будет только одна сторона и один край!
[Дьюдени описывает то, что теперь хорошо известно как лист Мёбиуса — один из самых курьезных объектов топологии (см. М. Гарднер, Математические головоломки и развлечения, гл. 7, М., изд-во «Мир», 1971). — М. Г.]
502. Несомненно, правильным решением этой головоломки является BACH (Бах). Если вы начнете поворачивать крест, то получите последовательно В-бемоль (ключ соль), А (теноровый ключ), С (альтовый ключ) и В натуральное (ключ соль). По немецкой терминологии В-бемоль называется «В», а В натуральное «Н», что и дает BACH.
Это напоминает мне органную фугу К. П. Эмануеля Баха, основанную на его фамилии и начинающуюся так, как показано на рисунке.
503. Если каждый из двух мужчин женится на матери другого и от каждого из браков родится по сыну, то каждый из этих сыновей будет приходиться другому одновременно и дядей, и племянником. Это простейший ответ.
[Возможны еще два ответа: 1) каждая из двух женщин выходит замуж за отца другой; 2) мужчина женится на матери некой женщины, а эта женщина выходит замуж за отца этого мужчины. — М. Г.]
504. Если у каждой из двух вдов есть по сыну и если каждая из них выходит замуж за сына другой, причем они рожают от этих браков по дочери, то в результате получаются те самые родственные связи, которые указаны в эпитафии.
505. Ясно, что кондуктора не могут звать Смитом, поскольку мистер Смит — ближайший к инженеру бизнесмен и его доход, следовательно, точно делится на 3, а 10 000 на 3 не делится. Точно так же кочегара не могут звать Смитом, раз Смит обыгрывает его в бильярд. Следовательно, Смитом зовут инженера, а поскольку нас только он и интересует, то для нас совершенно неважно, зовут ли кондуктора Джонсом, а кочегара Робинсоном или наоборот.
[Это одна из наиболее популярных головоломок Дьюдени. Она стала прототипом десятков других логических задач, называемых иногда головоломками типа Смит — Джонс — Робинсон в честь первоначальной задачи Дьюдени. — М. Г.]
506. Пронумеруйте в правильном порядке камни от 1 до 8. Затем действуйте следующим образом: 1, берег, 1, 2, 3, (2), 3, 4, 5, (4), 5, 6, 7, (6), 7, 8, берег, (8), берег. В скобки взяты шаги в обратном направлении. Можно заметить, что, вернувшись на берег после первого шага, а затем все время делая 3 шага вперед и 1 назад, мы выполним задание за 19 шагов.
507. Приятель полковника сказал, что 1 : 50 неудобное время отправления для поезда потому, что если вы на него сядете, то это будет 1 : 50 (1 к 50)[45].
508. Если вы перевернете страницу вверх ногами, то обнаружите, что 1 (one), 9 (nine), 1 (one) и 8 (eight) дают правильную сумму 19 (nineteen).
509. Мы не можем с уверенностью сказать, какую часть змеи должна проглотить соперница, чтобы ее можно было считать погибшей. Однако мы можем утверждать, чего заведомо не произойдет: змеи не будут заглатывать друг друга до тех пор, пока обе не исчезнут! Но где в действительности оборвется «процесс заглатывания», сказать трудно.
510. Если бы W и Е были фиксированными точками и W, как и в действительности, располагалось бы слева, когда мы движемся к N, то, пройдя Северный полюс, мы обнаружили бы W справа, как и утверждалось. Однако W и Е не фиксированные точки, а направления на глобусе; поэтому когда вы смотрите на N, то W означает направление налево, а Е — направо.
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.