Пятьдесят занимательных вероятностных задач с решениями - [22]
Умножая на 3!, получаем более знакомое выражение
которое с помощью биномиальных коэффициентов может быть записано в виде
Но эта сумма есть разложение (x + y)³ при х = −1, y = 1 и, значит, равна нулю, так как (-1 + 1)³ = 0³ = 0. Этот факт имеет место при каждом значении i + j = r, r = 1, 2, ...., n, так что соответствующие суммы равны нулю. Лишь при r = 0 получаем единственный член (-1)>0/(0!·0!) = 1. Следовательно, решение (3) удовлетворяет уравнению (2).
Ясно, что других решений у (2) нет. Это может быть доказано методом индукции, так как P(0/n) выражается через P(0/1), P(0/2), ..., P(0/n − 1).
Из (1) и (3), наконец, выводим
Если n − r велико, то выражение в скобках близко к e>−1 и
если только n − r достаточно велико. Итак, действительно, вероятности r совпадений в нашей задаче близки к пуассоновским со средним 1. Однако для этой близости необходимо, чтобы разность n − r была велика, а не только само n, как казалось в начале.
Вероятность того, что нет ни одного совпадения, при больших n стремится к e>−1 ≈ 0.368.
47. Решение задачи о выборе наибольшего приданого
Любопытно узнать — на много ли шансы мудреца на успех больше 1/100? Многие предлагают следующую стратегию: пропустить первую половину билетов и затем выбрать первую сумму, превосходящую все предыдущие, если таковая найдется. Это достаточно разумно, но такая стратегия не является оптимальной. Очень немногие представляют себе порядок величины вероятности выигрыша.
Мы начнем с рассмотрения нескольких примеров. Поскольку мы ничего не знаем о суммах, проставленных на билетах, то можем рассматривать лишь номера билетов при их упорядочении согласно величинам сумм, записанных на них. Если, например, у нас имеется три билета с номерами 1, 2, 3, то билету 3 отвечает наибольшее приданое. Для одного или двух билетов задача тривиальна: мудрец делает правильный выбор при одном билете, и его шансы на выигрыш равны 1/2 при двух билетах.
При трех билетах имеем шесть возможных способов вытаскивания:
123 231*
132* 312
213* 321
Одна из стратегий — пропустить первый билет и затем выбрать первый номер, его превосходящий, если такой найдется. Эта стратегия выигрывает в трех случаях, отмеченных звездочкой, т. е. в половине всех возможных случаев, что значительно улучшает просто случайную догадку, например, выбор первого билета.
Допустим теперь, что у нас есть четыре билета. Их возможные перестановки есть
1234 2134 3124*+ 4123
1243+ 2143*+ 3142*+ 4132
1324+ 2314+ 3214*+ 4213
1342+ 2341+ 3241*+ 4231
1423* 2413* 3412* 4312
1432* 2431* 3421* 4321
Кажется разумным пропустить первый билет и остановиться на следующем наибольшем номере, если он есть. Назовем этот план стратегия 1. Звездочки в нашем списке указывают на случай выигрыша этой стратегии. Вероятность правильного решения равна здесь 11/24, что гораздо лучше, чем случайное решение с вероятностью выигрыша 1/4.
Стратегия 2 пропускает первые два номера и затем выбирает первый номер, их превосходящий. 10 перестановок, в которых эта стратегия дает выигрыш, отмечены крестиком. Видно, что стратегия 1 выигрывает чаще.
Если продолжать изучение всех возможных случаев их перечислением, то задача приобретает зловещий вид, так как уже для восьми билетов число перестановок есть 40320. Далее, могут существовать хорошие стратегии, которые мы упустим из виду, хотя это кажется невероятным. Будем надеяться, что математика сможет нам помочь.
Следует подчеркнуть, что мудрец ничего не знает о распределении номеров. Чтобы удостовериться в этом, король может сам вытаскивать билеты и сообщать мудрецу их номера среди уже появившихся. Только билет с наибольшим приданым среди вытянутых заслуживает внимания; назовем такое максимальным.
Покажем теперь, что оптимальная стратегия — пропустить s − 1 билетов и выбрать первый максимальный номер после них. Мы выберем максимальное приданое на i-м шагу, если вероятность того, что оно наибольшее среди всех имеющихся, превосходит вероятность правильного решения при оптимальной стратегии и более позднем вытягивании. Формально: остановимся на максимальном номере при i-м вытягивании, если
Р (выиграть при i-м вытягивании) > Р (выиграть при оптимальной стратегии, начиная с i + 1 вытягивания). (1)
Покажем, что вероятность в правой части (1) убывает, когда i возрастает, а вероятность в левой части (1) возрастает с возрастанием i, и потому существует выбор шага i, после которого предпочтительнее удержать максимальное приданое, нежели продолжать испытания. Вычисляя затем вероятность выигрыша для такой стратегии, найдем оптимальный выбор значения s.
После нескольких первых ходов в этой игре мы можем еще прибегнуть ко всем стратегиям, определяемым последующими вытаскиваниями, так как мы всегда можем пропустить часть билетов, пока не достигнем нужного нам числа билетов. Следовательно, вероятность в правой части неравенства (1) не возрастает с ростом
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.