Пятьдесят занимательных вероятностных задач с решениями - [19]

Шрифт
Интервал

41. Обсуждение задачи о поездах

Хотя на поставленные вопросы вряд ли можно дать «правильный» ответ, все же возможно разумное объяснение этих задач. Например, согласно принципу симметрии, если на отрезок бросается одна точка, то в среднем два полученных отрезка имеют одинаковую длину, так что в пункте (а) ответ равен 119, так как длина левого промежутка равна 59, 2·59 = 118 и 118 + 1 = 119.

Аналогично в пункте (б) можно предположить, что пять наблюденных номеров разбивают весь отрезок на шесть равных частей. Так как 60 − 5 = 55, то средняя длина первых пяти отрезков равна 11, и общее число номеров может быть оценено как 60 + 11 = 71 (рис. 16). Конечно, оценка не может быть абсолютно точной при многократном употреблении.

Рис. 16.

Указанный метод заставляет думать, однако, что в среднем при многократном использовании такие оценки мало отличаются от истинного значения N при большом числе наблюдений. Если неизвестное число N подлежит оценке во многих задачах, то, следуя каждый раз приведенному методу (извлечь выборку, построить оценку), мы в среднем будем близки к истинному значению при достаточно больших объемах выборок.

С другой стороны, может быть и так, что вас не интересует приближение в среднем или недоступно большое число наблюдений, но вы хотите угадать значение N, несмотря на то, что это маловероятно. Тогда разумно оценить N как наблюденный максимум из номеров. Если вы, например, знаете номера двух локомотивов, то вероятность того, что один из двух номеров — максимально возможный, равна

или 2/N.

Иногда пользуются методом доверительного оценивания, при котором в качестве оценки предлагается некоторый интервал для неизвестного параметра. Ограничимся случаем одного наблюдения. Если наудачу извлечь один из номеров 1, 2, ..., N, то вероятность появления каждого номера равна 1/N. Поэтому вероятность того, что наш номер принадлежит некоторому множеству, равна числу элементов этого множества, деленному на N. Так, если, скажем, n — это случайный номер, а N — четное число, то P(n > N/2) = 1/2, для нечетных значений N эта вероятность несколько больше. Таким образом, если n случайно, то вероятность события n > N/2 не меньше 1/2. Если мы наблюдаем значение n, а N не известно, то в качестве верхней границы для N мы можем предложить 2n. В каждом отдельном случае утверждение 2n > N верно или нет, однако, оно справедливо более, чем в половине случаев. Если желать увеличения процента правильных высказываний, то надо изменить доверительный предел.

Так, например,

и утверждение 3n ≥ N справедливо по крайней мере в 2/3 случаях. В нашей задаче, если мы хотим быть уверенными в справедливости нашего высказывания о значении числа N в 2/3 из 100% случаев, то можем сказать, что N лежит в промежутке с концами 60 и 180.

Другим часто используемым методом для оценивания является метод максимального правдоподобия, согласно которому значение N выбирается таким образом, чтобы сделать наблюденную выборку наиболее вероятной. Так, например, если N = 100, то наше наблюденное значение 60 имеет вероятность 1/100, в случае же N = 60 эта вероятность равна 1/60. Мы не можем оценить N значением, меньшим 60, так как для N = 59 или меньшем вероятность появления номера 60 равна нулю. Следовательно, если n — наблюденный номер, то оценкой максимального правдоподобия для N является само n.

В задаче не предполагалось наличие добавочной информации, такой, как «это большая железная дорога, и на ней по крайней мере 100 поездов, но, наверное, меньшее, чем 100 000», которая, конечно, может быть полезна.

42. Решение задачи о коротком куске стержня

(а). Случайность разлома стержня означает равномерную распределенность точки деления. Таким образом, вероятность того, что точка разлома находится в левой или правой половине стержня, одинакова. Если эта точка находится в левой половине, то левый кусок и является меньшим, его средняя длина равна половине от этой половины, что составляет четвертую часть длины стержня. Подобные рассуждения применимы и тогда, когда точка деления — на правой половине, так что ответ таков: одна четверть длины стержня.

(б). Можно считать, что точка перелома лежит в правой половине стержня. Тогда (1 − x)/x является отношением короткого куска к длинному при условии, что сам стержень имеет единичную длину. Так как величина x равномерно распределена на отрезке [1/2, 1], то среднее отношение равно, вместо интуитивно ожидаемого ответа 1/3,

43. Решение задачи о сломанном стержне

Можно считать, что стержень имеет единичную длину. Пусть x и y — точки перелома, причем x лежит слева от y (рис. 17).

Рис. 17. Промежуток с точками перелома x и y.

Согласно принципу симметрии каждый из трех кусков (левый, средний и правый) имеют среднюю длину 1/3, но нам надо найти, скажем, среднюю длину наименьшего куска. Если точки выбираются наугад, то обозначим через X положение первой, а через Y — положение второй точки. Тогда пара (XY) равномерно распределена на единичном квадрате (рис. 18), и вероятности событий вычисляются как площади соответствующих подмножеств квадрата. Так, например, вероятность того, что


Рекомендуем почитать
Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.