Путеводитель для влюбленных в математику - [51]

Шрифт
Интервал

(x) = 3,9 x (1 – x). Но итерации логистического отображения никогда не приведут к стабильности. Хаос будет длиться вечно.

Великолепно: итерации беспорядочны, но система предсказуема на 100 %!

• Мы знаем исходную величину: x = 0,1.

• Мы знаем правило перехода от одного шага к другому: xf(x) = 3,9 x (1 – x).

Следовательно, мы можем вычислить состояние системы, скажем, на тысячной итерации. Верно?

Неверно.

Мы загнаны в угол стечением двух обстоятельств: ошибок округления и чувствительности системы к исходному состоянию. Обсудим каждое из них.

Когда мы проводим вычисления на калькуляторе или на компьютере, результат зачастую оказывается приблизительным. Например, если мы делим 1 на 3, наши приборы выдают десятичную дробь 0,3333333. В ней, скажем, семь знаков после запятой. На самом деле троек после запятой бесконечно много, но калькулятор ограничивается конечным количеством цифр. После нескольких итераций функции f(x) = 3,9 x (1 – x) количество знаков после запятой достигает дюжины. Рано или поздно компьютер выдает лишь приблизительный, а не точный результат. Обычно мы не придаем значения таким ошибкам. Если мы подсчитываем, сколько картин уместится на пустой стене, нас не волнует ошибка на одну триллионную. Почему ошибки округления имеют значение в данном случае?

Они ведут нас к загвоздке – чувствительности системы к исходному состоянию. Посчитаем итерации нашей функции, начиная с двух почти что равных величин: х = 0,1 и х = 0,10001. Интуитивно мы предполагаем, что скромная разница между исходными величинами не играет роли. Так ли это? Что произойдет?



Замечу, что первые десять итераций или около того не приводят к значительным отличиям. Но затем траектории начинают расходиться. Это можно проиллюстрировать на графиках эволюции той и другой системы. Сплошная линия соответствует итерированию системы с исходным значением 0,1. Пунктирная линия иллюстрирует итерирование системы с исходным значением 0,10001.



Каково значение f>1000 (0,1)? К чему мы придем, если мы проделаем тысячу итераций функции f(x) = 3,9 x (1 – x)?

Разумеется, мы доверяем вычисления компьютеру, но получается какая-то чепуха. Проиллюстрируем этот факт, проделав вычисления трижды с разным уровнем точности (заданным количеством знаков после запятой). Мы получим следующие результаты:



Ни одна из этих величин не равна f>1000 (0,1) в точности.

Мы будем биться до последней капли крови. Компьютер может работать с произвольной точностью. Он может не округлять полученное значение. К чему это приведет?



Точное значение f ⁶ (0,1) имеет длину 127 знаков после запятой, а точное значение f ⁷ (0,1) растягивается после запятой на 255 знаков. Количество знаков после запятой увеличится примерно вдвое на каждой итерации. Нет настолько мощного компьютера, чтобы вычислить точное значение f>1000 (0,1).

К чему мы пришли? Несмотря на то что мы знаем исходное состояние системы и правило перехода от одного шага к другому, мы не в силах в точности предугадать ее состояние на 1000-м шаге.

Можно доказать, что точное значение f>1000 (0,1) лежит между 0 и 1, и задаться вопросом: какова вероятность того, что f>1000 (0,1), скажем, больше 0,5?

Ответ: либо 0, либо 1, потому что здесь нет ничего случайного. Либо f>1000 (0,1) > 0,5, либо f>1000 (0,1) ≤ 0,5, третьего не дано. Никаких «может быть», ничего случайного.

Даже настолько простая система способна оказаться хаотичной. Она абсолютно детерминирована и в то же время непредсказуема.

Огромное количество математических систем ведет себя хаотично, и многие из них позволяют строить модели явлений природы, например в метеорологии.

3x + 1, или проблема Коллатца[212]

До сих пор мы говорили об итерациях логистических отображений. Мы закончили обсуждением разных типов функций и тернистой, неразрешимой проблемы их итерации.

Логистическое отображение – функция, заданная простой алгебраической формулой. Однако функции можно задавать иначе. Функция F, о которой сейчас пойдет речь, определена исключительно для положительных целых чисел и задана следующим образом:



Эта функция задается двумя простыми алгебраическими формулами, но мы выбираем формулу в зависимости от того, четное число x или нечетное.

Пример:

• F (9) = 28. Число 9 – нечетное, поэтому мы руководствуемся формулой 3х + 1 и получаем 3 × 9 + 1 = 28;

• F (10) = 5. Число 10 – четное, поэтому мы руководствуемся формулой x/2 и получаем 10/2 = 5.

Вне зависимости от того, четное число мы подставляем в функцию или нечетное, ее значение будет целым положительным числом.

Короче говоря, если x – целое положительное число, F (x) – тоже целое положительное число.

Мы можем итерировать нашу функцию, потому что выходное значение удовлетворяет условию, наложенному на входное значение. Что мы получим, итерируя функцию при начальном значении x = 12?

• F (12) = 6, потому что число 10 четное;

• F² (12) = F (6) = 3, потому что число 6 четное;

• F³ (12) = F (3) = 10, потому что число 3 нечетное;

• F⁴ (12) = F (10) = 5.

Вот удобный способ проиллюстрировать итерации. Мы записываем 12 → 6, подразумевая, что значение функции от 12 равно 6. Мы можем записать итерации


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.