Путеводитель для влюбленных в математику - [50]
Подумаем о функции f(x) = x² + 1. Запись f(f(x)) означает, что мы применяем операцию f дважды: берем число x, закидываем его в функцию f, а потом снова закидываем то, что получилось, в функцию f. Вот пример:
f(f(2)) = f(2² + 1) = f(5) = 5² + 1 = 26.
Можно проводить итерацию сколько угодно раз. Например, трижды:
f(f(f(2))) = f(f(5)) = f(26) = 26² + 1 = 677.
Когда мы выходим на четвертую итерацию, запись становится громоздкой. Поэтому вместо f(f(f(f(x)))) мы будем записывать f⁴(x), подразумевая, что верхний индекс означает не возведение в степень, а последовательное применение функции. Для положительного целого числа n выражение f n(x) означает:
Сейчас мы проитерируем функции вида f(x) = mх(1 – х), где m – некое число. Это семейство функций называется логистическим отображением[209]. Во всех случаях мы будем начинать с числа x = 0,1, итерировать функцию и наблюдать за происходящим. Мы начнем с функции:
f(x) = 2,5x (1 – x).
Начнем с x = 0,1 и на первом шаге посчитаем:
f(0,1) = 2,5 × 0,1 × (1–0,1) = 2,5 × 0,1 × 0,9 = 0,225.
Применим f снова:
f ²(0,1) = f(0,225) = 2,5 × 0,225 × (1–0,225) = 2,5 × 0,225 × 0,775 = 0,4359375.
Прибегнем к помощи компьютера. Программа, итерирующая f, даст такие результаты:
Заметим, что успешное итерирование все больше и больше приближает нас к 0,6. Есть хороший способ продемонстрировать это наглядно. Отметим на графике величины f(0,1), f(f(0,1)), f(f(f(0,1))) и т. д. На оси абсцисс нанесем номера итераций, n. На каждом шаге будем отмечать значение f n(x) («нулевая» итерация – это наше начальное число 0,1). Соединим все точки отрезками. Вот что получится:
Мы видим, что итерации f(x) сходятся к числу 0,6.
А что, собственно, особенного в числе 0,6? Заметим, что
f(0,6) = 2,5 × 0,6 × (1–0,6) = 2,5 × 0,6 × 0,4 = 0,6.
Число 0,6 называют неподвижной точкой функции f, поскольку применение функции к этому числу не меняет его: f(0,6) = 0,6.
Продублируем эксперимент с другой функцией того же семейства; на сей раз возьмем множитель m = 2,8; таким образом, функция приобретает вид f(x) = 2,8 x (1 – x). Как и в предыдущем случае, мы начнем итерирование с x = 0,1. Вот первые 10 значений:
Похоже, итерации выплясывают вокруг 0,64. Продолжим итерировать и построим график:
В пределах первых 10 итераций значения функции слегка колеблются вверх и вниз, но уже на 30-й они выравниваются. На какой величине? Это число между 0 и 1, такое, что f(x) = x. Нам остается решить незамысловатое уравнение:
Итерации f(x) = 2,8 x (1 – x) сходятся к числу 0,642857.
Итерирование логистического отображения f(x) = m x (1 – x) можно рассматривать в качестве простой эволюционирующей системы. Число x показывает состояние системы, а функция f диктует, как система эволюционирует при смещении на один шаг[210]. В двух рассмотренных нами случаях (m = 2,5 и m = 2,8) долгосрочное поведение системы приводит к «равновесию» в неподвижной точке функции.
Мы продолжим исследование итераций логистического отображения в случае m = 3,2. Как и в предыдущих случаях, мы начнем с х = 0,1. Вот первые десять значений:
Что происходит? Итерации не сходятся к одной величине. Значения на четных шагах становятся меньше (это примерно 0,66; 0,64; 0,62; 0,6; 0,57), а на нечетных – растут (примерно 0,72; 0,74; 0,75; 0,77). Значения расходятся, а не сходятся!
Начертим график первых 30 итераций, чтобы изобразить наглядно проведение системы:
Посмотрите! Она не выравнивается к одному числу, а осциллирует[211] между двумя величинами. Доведем вычисления до 50-й итерации. Вот последние строчки таблицы:
Долгосрочное поведение системы – осцилляция между двумя величинами, s = 0,799455… и t = 0,5130445… Эти числа таковы, что f(s) = t, а f(t) = s. Правило осцилляции можно изобразить так:
Какое еще поведение функции мы можем наблюдать, итерируя логистическое отображение? В следующем пункте нашей экспедиции m = 3,52. Посмотрим на график итераций f(x), f²(x), f³(x), …
А вот таблица итераций:
Долгосрочное поведение функции занятно, но по-прежнему стабильно. Система идет по циклу из четырех величин ad infinitum, как показано на иллюстрации.
Мы проследили долгосрочное поведение итераций логистического отображения f(x) = m x (1 – x). Итерации всегда приводили нас к стабильности. В некоторых случаях (m = 2,5 и m = 2,8) система сходилась к одной величине: неподвижной точке функции f. В других случаях (m = 3,2 и m = 3,52) она приобретала стабильный, предсказуемый ритм.
Жизнь хороша. Мы знаем исходную величину: x = 0,1. И мы знаем правило, по которому переходим от одного шага к другому: f(x) = m x (1 – x). Разумеется, мы можем предвидеть поведение функции на любом шаге до бесконечности. Верно?
Настало время для последнего примера: m = 3,9. Доверим подсчет первых 10 итераций компьютеру:
Что происходит? Неясно. Попробуем изобразить на графике первые 30 итераций:
Хм… Ритм не прослеживается. Спокойствие, только спокойствие! Изобразим на графике первые 100 итераций.
Колебания величин выглядят случайными. Разумеется, на самом деле это не так! Значение функции на каждом шаге можно точно подсчитать по формуле
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.