Путеводитель для влюбленных в математику - [43]

Шрифт
Интервал

Продолжим подсчитывать клеточки, на сей раз затронутые двумерной фигурой – кругом[181] с радиусом 1.

Будем снова и снова вычерчивать наш круг на бумаге с клеточками 1 × 1, 1/2 × 1/2, 1/4 × 1/4 и т. д. Всякий раз мы станем закрашивать клеточки, затронутые кругом, то есть те, что расположены внутри круга, и те, которые пересекает окружность.

На бумаге, расчерченной 1 × 1, разместим центр круга на перекрестье клеточек; легко заметить, что он затрагивает ровно четыре клеточки. Изобразим развитие ситуации на следующих этапах:



На втором этапе круг затрагивает все 16 клеточек, затем все клеточки, кроме 4, то есть 60. Считать дальше скучно, поэтому доверим процесс компьютеру. Вот результат:



Сразу видно, что уменьшение стороны клеточки в 2 раза приводит к увеличению числа закрашенных клеточек примерно в 4 раза. Вот точные соотношения:



Грубо говоря, число закрашенных клеточек действительно возрастает в четыре раза. Но это приближение становится не таким грубым, когда число клеточек увеличивается. Почему?

Когда площадь клеточек мала, подавляющее большинство закрашенных клеточек лежит внутри круга. Кое-какие можно увидеть на периферии, но их ничтожно мало по сравнению с другими. Когда мы уменьшаем сторону клеточки вдвое, клеточек внутри круга становится больше в четыре раза, а вот количество клеточек на периферии увеличивается на меньшее число, потому что часть из них окружность не пересекает.

Рассуждая таким образом, мы поймем, что уменьшение стороны клеточки в 10 раз приводит к росту числа закрашенных клеточек примерно в 100 раз. Внутри круга клеточек становится ровно в 100 раз больше, но применительно к границе это утверждение не совсем верно.

Мы можем выразить соотношение между количеством клеточек, затронутых кругом, и длиной стороны клеточки следующим образом:



Вот еще один способ убедиться в том, что формула (B) верна. Площадь круга равна πr². Если радиус круга равен 1, его площадь равна π.

Нарисуем круг на бумаге с клеточками g × g и посчитаем, сколько клеточек он затронул; обозначим их количество буквой N. Каждая клеточка имеет площадь g². Общая площадь закрашенных клеточек почти совпадает с площадью круга. Таким образом,

π ≈ Ng².

Следовательно,

В упрощенном виде это приводит к соотношению

Мы нашли способ подсчитывать длины одномерных фигур и площади двумерных.

Соотношение (A) верно не только для нашей загогулины, но и для любого одномерного объекта. Когда мы делаем сетку мельче в 10 раз, количество клеточек, затронутых линией, вырастает примерно в 10 раз.

Соотношение (B) тоже выполняется не только для круга, но и для любой двумерной фигуры. Делаем сетку мельче в 10 раз – и количество клеточек, затронутых кругом, увеличивается примерно в 100 раз, потому что внутри одной большой клеточки теперь располагается 100 маленьких.

Итак:[182]


Размерность треугольника Серпинского

Мы теперь умеем уверенно отличать одномерные объекты от двумерных. Вычерчиваем объект на миллиметровке, делаем сетку все более мелкой и на каждом этапе подсчитываем затронутые им клеточки. Если выполняется соотношение (A), объект одномерный; если соотношение (B), объект двумерный.

Посмотрим, что произойдет с треугольником Серпинского на клетчатой бумаге[183]. Уместим его в клеточку 1 × 1. На рисунке показано, что будет при уменьшении размера клеточек до 1/2, 1/4, 1/8 и 1/16:



В первом случае затронуты все 4 клеточки. Во втором случае не затронуты 2 клеточки слева сверху и 2 клеточки справа сверху, а всего клеточек 16 штук. Вот таблица целиком:


Вопрос: когда мы уменьшаем сторону клеточки вдвое, количество клеточек, затронутых нашей фигурой, увеличивается в два раза (случай одномерного объекта) или в четыре раза (случай двумерного объекта)?

Разумеется, вся соль в том, что ни один из двух вариантов не подходит. На новом этапе количество клеточек вырастает ровно в три раза[184]. Их число растет быстрее, чем в случае одномерных объектов, но медленнее, чем в случае двумерных. Таким образом, размерность треугольника Серпинского лежит между двумя целыми величинами.

Мы можем в точности вычислить размерность треугольника Серпинского, но это потребует базовых знаний о логарифмах и некоторых алгебраических выкладок. Если вам все это в тягость, можете спокойно пропустить следующие абзацы.

Итак, цель состоит в том, чтобы найти формулу вроде (A) или (B): Число d в ней и будет количеством измерений нашей фигуры.

Если сторона клеточки равна

(где k – натуральное число), то
Вот проверка:



Формула

дает в точности те же числа, что и в предыдущей таблице.

Задача состоит в том, чтобы найти такое число d, что

Прологарифмируем обе части[185]:



Мы знаем

Подстановка в предыдущую формулу дает:



Наряду с треугольником Серпинского существует ковер Серпинского. Вот этапы его построения:



Устремляясь к бесконечности, мы получим такую картинку:



Как вы думаете, какова размерность этого фрактала? Ответ вы найдете в конце главы.

Серпинский и Паскаль

Студенты на факультетах математики до потери пульса разлагают на множители полиномы, в первую очередь степени x + y. Восстановим в памяти, о чем идет речь:



Мы можем расположить коэффициенты данных полиномов в таблице. Ее называют


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.