Путеводитель для влюбленных в математику - [35]
Вот другое доказательство, тоже основанное на рассечении некой геометрической фигуры.
Расположим четыре одинаковых прямоугольных треугольника так, чтобы они образовали квадрат c × c:
Общая площадь этой фигуры с². Посчитайте самостоятельно сумму площадей треугольников и малого квадрата в центре. Ответ вы найдете в конце главы.
Еще одно доказательство на основе рассечения геометрической фигуры придумал Джеймс Гарфилд, 20-й президент Соединенных Штатов[150].
Сгруппируем три прямоугольных треугольника, два одинаковых поменьше и один побольше, чтобы они образовали трапецию[151]:
Посчитайте сначала площадь трапеции, а затем сумму площадей образующих ее треугольников. Ответ – в конце главы.
Вычислить абсолютную величину[153] числа означает лишить его минуса, если оно отрицательное. Например, | – 5 | = 5. Иными словами, число –5 включает 5 единиц.
Более точное определение абсолютной величины:
Например, |12 | = 12, | – 7 | = 7, |0 | = 0.
Вот геометрическая интерпретация: абсолютная величина числа x – это расстояние между точкой с координатой x и точкой с координатой 0 на числовой оси:
Абсолютная величина показывает, насколько число удалено влево или вправо от нуля; знак числа (плюс или минус) не играет роли.
Как мы распространим идею абсолютной величины на комплексные числа? Что значит |3 + 4i|? Мы не можем сказать, отрицательно или положительно число 3 + 4i. Эти термины неприменимы к комплексным числам. Наша цель – выяснить, насколько комплексное число удалено от нуля. Для этого нам необходима геометрическая интерпретация комплексного числа. Действительное число задает точку на числовой прямой; комплексное задает точку на плоскости. Например, комплексное число 3 + 4i можно изобразить геометрически, если отложить три единицы вправо и четыре единицы вверх от начала координат, как показано на рисунке.
Теперь подумаем, что значит расстояние от точки 3 + 4i до начала координат. На рисунке оно обозначено отрезком с двумя стрелочками на концах. Это – не что иное, как гипотенуза прямоугольного треугольника с катетами длиной 3 и 4. Пусть c – длина данной гипотенузы, тогда по теореме Пифагора
с² = 3² + 4² = 9 + 16 = 25.
Таким образом,
Вывод: |3 + 4i| = 5.В общем случае комплексное число a + bi задает точку с координатой a по горизонтали и координатой b по вертикали. Отрезок, соединяющий эту точку с началом координат, представляет собой гипотенузу прямоугольного треугольника с катетами длиной a и b. Если мы обозначим длину гипотенузы буквой c, то получим в соответствии с теоремой Пифагора:
Необходимо отметить, что эта формула работает как для комплексных, так и для действительных чисел[154]. Например, если мы хотим вычислить абсолютную величину числа –4 сложным путем, представим его в комплексном виде: – 4 + 0i. Подставив a = –4 и b = 0 в формулу (A), мы получим:
Если катеты прямоугольного треугольника равны 3 и 4, то гипотенуза равна 5. Все это целые числа[155]. Вот другой пример: если длины катетов 5 и 12, то длина гипотенузы –
Все три числа снова оказались целыми. Но так везет не всегда. Если длины катетов – 2 и 3, то длина гипотенузы
а это иррациональное число.Если три положительных целых числа a, b, c являются длинами сторон прямоугольного треугольника, их называют пифагоровой тройкой. Простейшие примеры: 3, 4, 5 и 5, 12, 13. А как насчет других? Как их отыскать? Удивительно, но факт: ключ к пифагоровым тройкам лежит в области комплексных чисел!
Прежде чем погрузиться в детали, посмотрим, как комплексное число z = 2 + i связано с пифагоровой тройкой 3, 4, 5:
• Шаг 1. Вычислим z²:
z² = (2 + i) × (2 + i) = (4–1) + (2 + 2) i = 3 + 4i.
• Шаг 2. Вычислим |z²|:
Вычисления на шаге 2 показывают, что числа 3, 4 и 5 представляют собой пифагорову тройку. Отрезок на комплексной плоскости, соединяющий начало координат и точку 3 + 4i, – это гипотенуза прямоугольного треугольника со сторонами 3 и 4, ее длина равна 5.
Повторим процедуру с комплексным числом z = 3 + 2i. Посчитаем z² и абсолютную величину этого числа:
Мы нашли пифагорову тройку: 5, 12, 13!
Еще один пример, и мы поймем принцип. Возьмем число z = 5 + 2i. Возведем его в квадрат и посчитаем абсолютную величину получившегося числа:
Мы нашли еще одну пифагорову тройку: 20, 21, 29.
Давайте подумаем, как это работает, вернувшись к первому примеру: z = 2 + i. Заметим:
Мы возвели z в квадрат и посчитали абсолютную величину получившегося числа: Подытожим:Таким образом, |z²| = |z|².
Всегда ли так? Разумеется, тождество выполняется для действительных чисел (например, |(–4)²| = |16 | = |–4 |²), но доказательство этого факта для комплексных чисел потребует некоторых алгебраических выкладок (проделайте их самостоятельно и сверьтесь с решением в конце главы[156]).
Вернемся к процедуре поиска пифагоровых троек. Начнем с комплексного числа z = x + yi, где x и y – целые числа[157]. Абсолютная величина z может не быть целым числом, но оно представляет собой квадратный корень из целого числа:
Абсолютная величина z² непременно будет целым числом: |Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.