Путешествия во времени. История - [78]
Подразумеваемый ответ, который иногда формулируется и явно, состоит в том, что Вселенная — сама себе компьютер. Она вычисляет собственную судьбу шаг за шагом, бит за битом (или кубит за кубитом[207]). Известные нам в начале XXI века компьютеры, за исключением их манящей квантовой разновидности, работают детерминистски. Определенные входные данные всегда дают на выходе одно и то же. Наши входные данные, повторим, представляют собой всю полноту начальных условий, а наша программа — законы природы. Это весь наш инструментарий — и вообще все, что у нас есть: будущее во всей его полноте уже существует. Никакой информации добавлять не нужно, открывать больше нечего. Никакой новизны и никаких сюрпризов не будет. Остается лишь клацанье логических передач — простая формальность.
Однако мы уже знаем, что в реальном мире всегда царит некоторая неразбериха. Измерения приблизительны. Знание несовершенно. «Детали сходятся одна с другой не плотно, а с некоторым люфтом, — писал Уильям Джеймс, — так что выкладывание одной из них не обязательно определяет, какие будут остальными». Вероятно, Джеймс был бы приятно удивлен откровениям квантовой физики: точное состояние частиц узнать попросту невозможно; бал правит неопределенность; на смену идеальному часовому механизму, о котором мечтал Лаплас, пришли распределения вероятностей. «Признается, что возможности могут превосходить подлинные условия, — мог бы сказать Джеймс (то есть он действительно это сказал, но намного раньше, чем до этого дошла реальная наука), — и что вещи, не открытые еще нашему знанию, могут сами по себе оказаться неопределенными». Вот именно. Физик со счетчиком Гейгера не в состоянии догадаться, когда раздастся очередной щелчок. Можно предположить, что наши современные квантовые физики-теоретики присоединились бы к Джеймсу и вместе с ним приветствовали бы индетерминизм.
Все компьютеры в наших мысленных экспериментах, если не всегда в наших домах, детерминистские, потому что они так спроектированы. Аналогично научные законы — детерминистские, потому что люди их так записали. Они идеально точны, что достижимо в мыслях или в Платоновом идеальном царстве, но невозможно в реальном мире. Уравнение Шредингера — первейший инструмент современной физики — разбирается с неопределенностями, сводя вероятности в единую систему — волновую функцию, описывающую амплитуду вероятности. Чудовищно абстрактный объект эта волновая функция! Физик может записать ее как Ψ и не беспокоиться слишком о ее содержании. «Откуда мы ее взяли? — спрашивал Ричард Фейнман. — Ниоткуда. Невозможно вывести ее из чего бы то ни было нам известного. Она вышла из головы Шредингера». Она просто была и остается поразительно эффективной. И стоит ею воспользоваться, как уравнение Шредингера возвращает детерминизм в процесс. Расчеты носят детерминистский характер. Имея надлежащие входные данные, хороший квантовый физик может с определенностью рассчитать результат и продолжить вычисления. Единственная проблема возникает при возвращении от идеализированных уравнений в реальный мир, который они, по идее, должны описывать. Нам в конце концов приходится парашютировать из Платоновой абстрактной математики в подлунный мир лабораторных столов. В этот момент, когда требуется провести акт измерения, волновая функция схлопывается, или коллапсирует (как говорят физики), вырождаясь в конкретное физическое состояние. Кот Шредингера оказывается либо жив, либо мертв. Как говорит лимерик,
Коллапс волновой функции в квантовой физике служит поводом для споров в квантовой физике, предметом которых является не математика, а философский подтекст. Что все это может означать — вот основная проблема, и различные подходы к ней называются интерпретациями. Есть копенгагенская интерпретация, первая из многих. Копенгагенский подход состоит в том, что коллапс волновой функции — неудобная необходимость, этакая физиологическая потребность, без которой не обойтись[208]. Девиз этой интерпретации «Заткнись и считай». Есть еще бомовская интерпретация, гипотеза о «скрытых параметрах», квантовое байесианство, объективный коллапс и — последняя по порядку, но определенно не по значению — многомировая. «Стоит пойти на любую встречу, и оказываешься будто в священном городе во время большого переполоха, — говорит физик Кристофер Фукс. — Встретишь все религии и жрецов каждой из них, сцепившихся в священной войне».
Многомировая интерпретация — фантастическая выдумка, которую защищают некоторые умнейшие физики нашего времени. Это интеллектуальные наследники Хью Эверетта, если не Борхеса. «Многомировая интерпретация воплощает в себе весь блеск и публичность, — написал Филип Болл, английский популяризатор науки (из физиков), в 2015 г. — Она утверждает, что у каждого из нас имеется множество копий, которые живут другими жизнями в других Вселенных и, вполне возможно, занимаются всем тем, о чем мы мечтаем, но чего никогда не добьемся (или на что никогда не осмелимся). Кто мог бы сопротивляться такой идее?» (Он-то может, вообще говоря.) Поборники многомировой интерпретации подобны Плюшкиным, они не в состоянии ни от чего избавиться. Для них не существует таких вещей, как невыбранная тропка. Все, что может случиться, случается. Все возможности реализуются, если не здесь, то в другой Вселенной. В космологии Вселенных тоже хватает. Брайан Грин называет девять различных типов параллельных Вселенных: «стеганая», «инфляционная», «бранная», «циклическая», «ландшафтная», «квантовая», «голографическая», «условная» и «окончательная». Многомировую интерпретацию невозможно опровергнуть средствами логики. Она слишком притягательна: любой аргумент, который можно выдвинуть против нее, был уже рассмотрен и (как им кажется) отвергнут ее заслуженными защитниками.
В 1970-х годах ученые начинают изучать хаотические проявления в окружающем нас мире: формирование облаков, турбулентность в морских течениях, колебания численности популяций растений и животных… Исследователи ищут связи между различными картинами беспорядочного в природе.Десять лет спустя понятие «хаос» дало название стремительно расширяющейся дисциплине, которая перевернула всю современную науку. Возник особый язык, появились новые понятия: фрактал, бифуркация, аттрактор…История науки о хаосе — не только история новых теорий и неожиданных открытий, но и история запоздалого постижения забытых истин.
Эта книга о жизни и работе нобелевского лауреата по физике Ричарда Фейнмана. Доступное описание физических вопросов и факты из жизни ученого делают рассказ интересным для всех, кто интересуется историей науки.
В статье анализируется одна из ключевых характеристик поэтики научной фантастики американской Новой волны — «приключения духа» в иллюзорном, неподлинном мире.
Эмма Смит, профессор Оксфордского университета, представляет Шекспира как провокационного и по-прежнему современного драматурга и объясняет, что делает его произведения актуальными по сей день. Каждая глава в книге посвящена отдельной пьесе и рассматривает ее в особом ключе. Самая почитаемая фигура английской классики предстает в новом, удивительно вдохновляющем свете. На русском языке публикуется впервые.
Диссертация американского слависта о комическом в дилогии про НИИЧАВО. Перевод с московского издания 1994 г.
Научное издание, созданное словенскими и российскими авторами, знакомит читателя с историей словенской литературы от зарождения письменности до начала XX в. Это первое в отечественной славистике издание, в котором литература Словении представлена как самостоятельный объект анализа. В книге показан путь развития словенской литературы с учетом ее типологических связей с западноевропейскими и славянскими литературами и культурами, представлены важнейшие этапы литературной эволюции: периоды Реформации, Барокко, Нового времени, раскрыты особенности проявления на словенской почве романтизма, реализма, модерна, натурализма, показана динамика синхронизации словенской литературы с общеевропейским литературным движением.
Один из лучших популяризаторов науки Фрэнк Вильчек в доступной форме описывает основные составляющие физической реальности — пространство, время, материю, энергию и динамическую сложность. Вы узнаете о теории Большого взрыва и возникновении Вселенной, познакомитесь с одними из крупнейших проектов современности: охотой на частицу Хиггса и поиском гравитационных волн, положивших начало новому виду «многоканальной» астрономии. Книга лауреата Нобелевской премии по физике для всех, кто хочет приблизиться к пониманию устройства Вселенной.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.