Противодействие беспилотным летательным аппаратам - [77]

Шрифт
Интервал

139. Охота на беспилотник: как военные борются с гражданской угрозой с воздуха // Военное. рф [Электронный ресурс], 11.11.2018. — URL: https://военное. рф/2018/%D0%91%D0%BF%D0%BB%D0%B029/ (дата доступа 20.12.2019).

140. ГЛОНАСС. Принципы построения и функционирования / Под ред. А.И. Перова, В.Н. Харисова. — М.: Радиотехника, 2010. — 800 с.

141. Яценков В. С. Основы спутниковой навигации. Системы GPS NAVSTAR и ГЛОНАСС. — М.: Горячая линия — Телеком, 2005. — 272 с.

142. Дятлов А. П., Дятлов П. А., Кульбикаян Б. Х. Радиоэлектронная борьба со спутниковыми радионавигационными системами. Монография. — М.: Радио и связь, 2004. — 226 с.

143. Камнев Е. А. Радиоподавление помехозащищенной навигационной аппаратуры потребителей спутниковых радионавигационных систем в интересах объектово-территориальной защиты. Дис. … канд. техн. наук по спец. 05.12.14 «Радиолокация и радионавигация». — М.: МАИ (НИУ), 2018. — 160 с.

144. Жук А. П., Орел Д. В. Об оценке помехозащищенности спутниковых радионавигационных систем // Инфокоммуникационные технологии. 2012. Т. 10. № 2. С. 83–88.

145. Казаков А. Е., Водяных А. А. Пути повышения помехозащищенности навигационной аппаратуры потребителей спутниковых навигационных систем // Системи обробки інформації. 2007. № 1 (59). С. 48–51.

146. Кащеев А. А., Кошелев В. И. Оценка эффективности подавления сигналов спутниковых радионавигационных систем преднамеренными помехами // Журнал радиоэлектроники. 2012. № 7. С. 1. — URL: http://jre.cplire.ru/koi/jul12/3/text.pdf (дата обращения: 14.04.2020).

147. Юдин В. Н., Камнев Е. А. Принципы создания противонавигационного поля радиопомех // Труды МАИ. 2015. № 83. С. 28. — URL: https://mai.ru/upload/iblock/8cb/yudin_kamnev_rus.pdfhttps://mai.ru/upload/iblock/8cb/yudin_kamnev_rus.pdf (дата обращения: 14.04.2020).

148. Абукраа А. С., Вилькоцкий М. А., Лыньков Л. М. Влияние на помехоустойчивость и точность абонентских приемников спутниковых навигаторов близкорасположенных экранов с учетом условий распространения радиоволн на реальной местности // Доклады БГУИР. 2017. № 3 (105). С. 85–92.

149. Тяпкин В. Н., Дмитриев Д. Д., Мошкина Т.Г. Потенциальная помехоустойчивость навигационной аппаратуры потребителей спутниковых радионавигационных систем // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева. 2012. № 3 (43). С. 113–119.

150. Дмитриев Д. Д. Исследование помехоустойчивости аппаратуры радионавигации // Современные проблемы развития науки, техники и образования. — Красноярск: ИПК СФУ, 2009. — С. 202–209.

151. Тяпкин В. Н., Гарин Е. Н. Методы определения навигационных параметров подвижных средств с использованием спутниковой радионавигационной системы ГЛОНАСС. Монография. — Красноярск: Сибирский федеральный университет, 2012. — 260 с.

152. Пантенков Д. Г. Результаты математического моделирования помехоустойчивости спутниковых радионавигационных систем при воздействии преднамеренных помех // Успехи современной радиоэлектроники. 2020. № 2. С. 57–68.

153. Журавлев А. В., Безмага В. М., Красов Е. М., Смолин А. В., Шуваев В. А., Маркин В. Г. Устройство для пространственной селекции сигналов навигационных космических аппаратов с использованием пеленгования источников радиопомех // Патент RU 2 619 80 °C1 от 18.05.2017.

154. Гэн K., Чулин Н. А. Интегрированная навигационная система для беспилотных летательных аппаратов с возможностью обнаружения и изоляции неисправностей // Машиностроение и компьютерные технологии. 2016. № 12. C. 182–206.

155. Беркович С. Б., Грибунин В. Г., Котов Н. И., Мартынюк Г. А., Махаев А. Ю., Смирнов Д. В., Шолохов А. В., Лапшина А. А. Оценка эффективности вариантов построения навигационных систем робототехнических комплексов // Известия Тульского государственного университета. Технические науки. 2016. № 11-3. С. 19–38.

156. Доронин Д. В., Донченко А. А., Шевцов С. Н. Функционирование математической модели ошибок бесплатформенной инерциальной навигационной системы при одновременной навигации, динамическом построении и обработки данных многоструктурных систем управления в рамках разработки алгоритмов интегрированной системы навигации летательного аппарата с использованием GPS/ГЛОНАСС технологий // Известия Самарского научного центра Российской академии наук. 2012. Т. 14. № 4 (5). С. 1363–1367.

157. Марюхненко В. С., Ерохин В. В. Структурный синтез навигационного обеспечения триадной интегрированной системы навигации на основе инерциальных и спутниковых технологий // Научный вестник Московского государственного технического университета гражданской авиации. 2017. Т. 20. № 4. С. 69–77. DOI: 10.26467/2079-0619-2017-20-4-69-77.

158. Рубцов В. Д., Заикин А. А. Сравнительный анализ эффективности различных вариантов комплексной обработки информации в аппаратуре потребителей спутниковых радионавигационных систем и инерциальной навигационной системе // Научный вестник Московского государственного технического университета гражданской авиации. 2010. № 159. С. 128–132.

159. Усов О. С., Хорошко А. Ю., Кванин Л. В. Лазерный высотомер для беспилотных летательных аппаратов вертолетного типа средней и большой дальности (ЛВ-50) // Секрет производства («ноу-хау») № 218.016.804d от 28.08.2018. — URL: https://edrid.ru/rid/218.016.804d.html (дата обращения: 17.04.2020).


Рекомендуем почитать
Юный техник, 2014 №  01

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.