Пространства, времена, симметрии - [77]
В случае, если в топологическом пространстве задана такая система открытых множеств, что любое открытое множество является объединением множеств этой системы, то множества этой системы называются окрестностями. Окрестность, содержащая точку А, называется окрестностью точки А.
Наиболее важными топологическими пространствами являются хаусдорфовы пространства, в которых выполнены еще две аксиомы: 5) точки замкнуты, 6) для всяких двух точек существуют непересекающиеся окрестности этих точек.
Два топологические пространства, между которыми установлено взаимно однозначное соответствие, причем замкнутые множества одного пространства соответствуют замкнутым множествам другого, называются гомеоморфными пространствами.
Однозначное преобразование одного топологического пространства в другое, переводящее замкнутые множества в замкнутые, называется непрерывным преобразованием.
Группы
Группой называется такое множество элементов любой природы, в котором всяким двум элементам А и В поставлен в соответствие третий элемент С=АВ, причем:
для всяких трех элементов A, B, C выполняется ассоциативный закон (AB)C=A(BC),
существует такой элемент I, что для каждого элемента А !А=А!=А, для каждого элемента А существует элемент A', для которого АA'=A'А=I. Элемент AB называется произведением элементов A и B, элемент I называется единицей группы, элемент A' называется обратным элементом для элемента A.
В случае, когда группа коммутативна, т.е. для всяких двух элементов А и В выполняется равенство АВ=ВА, групповая операция обычно называется сложением и обозначается С=А+В, роль eдиницы играет 0, а роль элемента обратного для А играет противоположный элемент -A. Если в множестве определены две операции - сложение и умножение, связанные дистрибутивным законом А(В+С)=АВ+АС, (А+В)С=АС+ВС, причем все множество со сложением и все множество без 0 с умножением являются коммутативными группами, то такое множество называется полем. Вещественные числа образуют поле R, комплексные числа образуют поле С Если в определении поля отказаться от коммутативности умножения, мы получим тело или косое поле. Примером тела является тело Н кватернионов а+bi+cj+dk, где i2=j2=-1, ij = -ji =k. Eсли в определении поля или тела отказаться от требования, чтобы множество без нуля являлось группой, мы получим кольцо. Два не нулевых элемента кольца, произведение которых равно 0, называются делителями нуля.
Две группы, два поля или два кольца, между которыми установлено взаимно однозначное соответствие, сохраняющее их операции, называются изоморфными. Если между двумя гпуппами G и H установлено однозначное, но не взаимно однозначное соответствие, сохраняющее групповую операцию, группы называются гомоморфными. В этом случае элементы первой группы, соответствующие единице второй, образуют подгруппу N, называемую инвариантной подгруппой или нормальным делителем. Группа H называется фактор-группой группы G по ее подгруппе N и обозначается G/N Группа, в которой нет инвариантных подгрупп, называется простой группой. Аналогично определяется гомоморфизм колец, в этом случае роль инвариантных подгрупп играют идеалы колец. Изоморфные отображения групп, полей и колец на себя называются автоморфизмами. Группы в которых имеются цепочки вложенных друг в друга инвариантных подгрупп, причем все фактор-группы каждой инвариантной подгруппы по следующей коммутативны, называются разрешимыми группами.
Линейные пространства и алгебры
Коммутативная группа, в которой определено умножение на вещественные числа, причем имеют место дистрибутивный закон умножения относительно сложения и ассоциативный закон умножения, называется линейным или векторным пространством. Элементы этого пространства называются векторами, а вещественные числа - скалярами. Размерность этого пространства равна числу линейно независимых векторов. Принимая эти векторы за базисные, мы можем представить любой вектор в виде линейной комбинации базисных векторов. Коэффициенты такого разложения являются координатами векторов в данном базисе.
Скалярная линейная функция от элементов линейного пространства записывается в виде j =ux, где х - вектор данного пространства, u - ковектор, т.е. вектор пространства, сопряженного с данным, выражение ux называется сверткой ковектора u и вектора х.
Скалярная полилинейная функция Ф р векторов и q ковекторов определяет тензор р-й ковалентности q-й валентности, коэффициенты функции Ф называются координатами тензора.
Функция Ф при р=2, q=0 называется билинейной формой.
Автоморфизмами линейного пространства являются его линейные преобразования x'=Ax, где А - линейный оператор.
Линейные операторы определяют тензоры, для которых р=q = 1.
Кольцо, являющееся линейным пространством при условии коммутативности умножения в кольце и умножения на скаляры в линейном пространстве, называется алгеброй или системой гиперкомплексных чисел.
Прямой суммой А+В двух алгебр А и В размерностей m и n называется алгебра размерности m+n, базис которой состоит из базисов алгебр А и B, причем все произведения базисных элементов разных прямых слагаемых равны 0.
У меня ведь нет иллюзий, что мои слова и мой пройденный путь вдохновят кого-то. И всё же мне хочется рассказать о том, что было… Что не сбылось, то стало самостоятельной историей, напитанной фантазиями, желаниями, ожиданиями. Иногда такие истории важнее случившегося, ведь то, что случилось, уже никогда не изменится, а несбывшееся останется навсегда живым организмом в нематериальном мире. Несбывшееся живёт и в памяти, и в мечтах, и в каких-то иных сферах, коим нет определения.
Патрис Лумумба стоял у истоков конголезской независимости. Больше того — он превратился в символ этой неподдельной и неурезанной независимости. Не будем забывать и то обстоятельство, что мир уже привык к выдающимся политикам Запада. Новая же Африка только начала выдвигать незаурядных государственных деятелей. Лумумба в отличие от многих африканских лидеров, получивших воспитание и образование в столицах колониальных держав, жил, учился и сложился как руководитель национально-освободительного движения в родном Конго, вотчине Бельгии, наиболее меркантильной из меркантильных буржуазных стран Запада.
Псевдо-профессия — это, по сути, мошенничество, только узаконенное. Отмечу, что в некоторых странах легализованы наркотики. Поэтому ситуация с легализацией мошенников не удивительна. (с) Автор.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Данная книга не просто «мемуары», но — живая «хроника», записанная по горячим следам активным участником и одним из вдохновителей-организаторов событий 2014 года, что вошли в историю под наименованием «Русской весны в Новороссии». С. Моисеев свидетельствует: история творится не только через сильных мира, но и через незнаемое этого мира видимого. Своей книгой он дает возможность всем — сторонникам и противникам — разобраться в сути процессов, произошедших и продолжающихся в Новороссии и на общерусском пространстве в целом. При этом автор уверен: «переход через пропасть» — это не только о событиях Русской весны, но и о том, что каждый человек стоит перед пропастью, которую надо перейти в течении жизни.
Результаты Франко-прусской войны 1870–1871 года стали триумфальными для Германии и дипломатической победой Отто фон Бисмарка. Но как удалось ему добиться этого? Мориц Буш – автор этих дневников – безотлучно находился при Бисмарке семь месяцев войны в качестве личного секретаря и врача и ежедневно, методично, скрупулезно фиксировал на бумаге все увиденное и услышанное, подробно описывал сражения – и частные разговоры, высказывания самого Бисмарка и его коллег, друзей и врагов. В дневниках, бесценных благодаря множеству биографических подробностей и мелких политических и бытовых реалий, Бисмарк оживает перед читателем не только как государственный деятель и политик, но и как яркая, интересная личность.