Пространства, времена, симметрии - [78]
Тензорным произведением АВ тех же двух алгебр А и В называется алгебра размерности mn, базисные элементы которой - произведения базисных элементов алгебр А и B, причем базисные элементы тензорных сомножителей коммутируют между собой.
Примерами алгебр являются:
алгебра С' двойных чисел а+be, e2= + 1, изоморфная прямой сумме R+R двух полей R,
алгебра М(п) вещественных матриц n-го порядка,
алгебра Н' псевдокватернионов a+bi+ce+df, i2=-1, e2= + 1, ie=-ei=f, изоморфная алгебре М(2),
алгебры СМ(п) и НМ(п) комплексных и кватернионных матриц n-го порядка, являющиеся тензорными произведениями алгебры M(n) на, соответственно, алгебру С или Н,
алгебра Cо дуальных чисел a+be, e2=0,
алгебра Но полукватернионов a+bi+ce+dh, i2=-1, e2=0, ie =-ei=h.
Алгебра A(n) альтернионов или чисел Клиффорда порядка n имеет размерность 2n-1, ee базис состоит из 1, i1,i2,...,in-1 для которых ik2= -1, и произведений различных одноиндексных элементов, причем ihik=-ikih. Aлгебры А(п) при n = 1, 2, 3, 4, 5, 6, 7, 8 изоморфны, соответственно, полям R и С, телу Н и алгебрам Н + Н, HM(2), CM(4), М(8) и М(8)+М(8).
Заменяя в определении алгебры А(п) k элементов ih элементами еh для которых eh2= +1, мы получим алгебру A(n-k, k) псевдоальтернионов порядка n и индекса k. Алгебры А(1,1) и А(2,1) изоморфны, соответственно, алгебрам C' и H'.
Заменяя в определении линейного пространства поле R скаляров полем C или телом H мы получим комплексное или кватернионное линейное пространство.
Заменяя в определении линейного пространства поле скаляров алгеброй с делителями нуля, мы получим модуль. В модулях имеются особенные векторы, которые не равны 0, но их произведения на делитель нуля, могут быть равны 0.
Пространства над алгебрами
Аффинное пространство над алгеброй можно определить как множество элементов, называемых точками, ассоциированное с линейным пространством или модулем, причем всяким двум точкам А и В соответствует вектор а=АВ, всякой точке А и вектору а соответствует такая точка В, что а=АВ, и для всяких трех точек А, В и С сумма векторов АВ и ВС равна вектору АС.
Прямой линией аффинного пространства над алгеброй называется такое множество точек, что для любых двух точек А и В этого множества вектор АВ коллинеарен с некоторым вектором линейного пространства или с неособенным вектором модуля ; m-мерной плоскостью называется такое множество точек, что для любых двух точек А и В этого множества вектор АВ является линейной комбинацией m линейно независимых векторов линейного пространства или модуля.
Аффинные преобразования аффинного пространства имеют вид x'=Af(x) + b, где А и b - линейный оператор и вектор линейного пространства или модуля, a f(x) - автоморфизм алгебры.
Две прямые линии или m-мерные плоскости называются параллельными, если они определяются одними и теми же линейно независимыми векторами линейного пространства или модуля. Одну из двух параллельных линий или плоскостей можно перевести в другую параллельным переносом x'=x+a.
В афинных пространствах над алгебрами с делителями нуля имеются смежные точки и смежные и расходящиеся прямые линии. Две точки А и В называются смежными, если вектор АВ особенный. Две прямые линии называются смежными, если они содержат смежные точки. Две прямые линии называются расходящимися, если они не имеют общих точек, но могут быть переведены параллельным переносом в смежные прямые линии.
Проективное пространство над алгеброй является результатом дополнения аффинного пространства бесконечно удаленными и идеальными точками, причем каждая система параллельных линий имеет одну общую бесконечно удаленную точку, а идеальные точки, которые имеются только в случае алгебр с делителями нуля, определяются смежными прямыми. Точки n-мерного проективного пространства представляются векторами (n + 1)-мерного аффинного пространства с точностью до правых скалярних множителей. Прямые линии и m- мерные плоскости проективного простраства представляются 2-мерными и (m+1) -мерными подпространствами линейного пространства или подмодулями модуля.
Так как бесконечно удаленные точки, которыми дополнено аффинное пространство, представляются векторами m-мерного линейного подпространства или подмодуля, эти бесконечно удаленные точки образуют бесконечно удаленную гиперплоскость проективного пространства. Идеальные точки представляются векторами, определяющими прямые смежные с прямыми, которые определяются векторами, представляющими бесконечно удаленные точки.
Проективные преобразования имеют вид x'=Af(x), где А - линейный оператор (n + 1)-мерного линейного пространства или модуля, а f(x) - автоморфизм алгебры.
Гиперплоскости, т.е. (n-1)-мерные плоскости аффинных и проективных пространств, определяются соответственными уравнениями ux+v=0 и ux=0, где u - ковектор линейного пространства или модуля, т.е. вектор пространства или модуля, сопряженного с рассматриваемым. В случае проективного пространства ковектор u определен с точностью до левых скалярных множителей, на этом основан принцип двойственности проективного пространства.
Если в аффинном пространстве над коммутативной алгеброй определено скалярное произведение векторов (a,b)=(b,a), т.е. скалярный квадрат (а,а) является квадратичной формой, мы получаем квадратичное евклидово или псевдоевклидово пространство.
У меня ведь нет иллюзий, что мои слова и мой пройденный путь вдохновят кого-то. И всё же мне хочется рассказать о том, что было… Что не сбылось, то стало самостоятельной историей, напитанной фантазиями, желаниями, ожиданиями. Иногда такие истории важнее случившегося, ведь то, что случилось, уже никогда не изменится, а несбывшееся останется навсегда живым организмом в нематериальном мире. Несбывшееся живёт и в памяти, и в мечтах, и в каких-то иных сферах, коим нет определения.
Патрис Лумумба стоял у истоков конголезской независимости. Больше того — он превратился в символ этой неподдельной и неурезанной независимости. Не будем забывать и то обстоятельство, что мир уже привык к выдающимся политикам Запада. Новая же Африка только начала выдвигать незаурядных государственных деятелей. Лумумба в отличие от многих африканских лидеров, получивших воспитание и образование в столицах колониальных держав, жил, учился и сложился как руководитель национально-освободительного движения в родном Конго, вотчине Бельгии, наиболее меркантильной из меркантильных буржуазных стран Запада.
Псевдо-профессия — это, по сути, мошенничество, только узаконенное. Отмечу, что в некоторых странах легализованы наркотики. Поэтому ситуация с легализацией мошенников не удивительна. (с) Автор.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Данная книга не просто «мемуары», но — живая «хроника», записанная по горячим следам активным участником и одним из вдохновителей-организаторов событий 2014 года, что вошли в историю под наименованием «Русской весны в Новороссии». С. Моисеев свидетельствует: история творится не только через сильных мира, но и через незнаемое этого мира видимого. Своей книгой он дает возможность всем — сторонникам и противникам — разобраться в сути процессов, произошедших и продолжающихся в Новороссии и на общерусском пространстве в целом. При этом автор уверен: «переход через пропасть» — это не только о событиях Русской весны, но и о том, что каждый человек стоит перед пропастью, которую надо перейти в течении жизни.
Результаты Франко-прусской войны 1870–1871 года стали триумфальными для Германии и дипломатической победой Отто фон Бисмарка. Но как удалось ему добиться этого? Мориц Буш – автор этих дневников – безотлучно находился при Бисмарке семь месяцев войны в качестве личного секретаря и врача и ежедневно, методично, скрупулезно фиксировал на бумаге все увиденное и услышанное, подробно описывал сражения – и частные разговоры, высказывания самого Бисмарка и его коллег, друзей и врагов. В дневниках, бесценных благодаря множеству биографических подробностей и мелких политических и бытовых реалий, Бисмарк оживает перед читателем не только как государственный деятель и политик, но и как яркая, интересная личность.