Пространства, времена, симметрии - [76]

Шрифт
Интервал

В главах о симплектической геометрии, в книгах по геометрии групп Ли я изложил результаты моих дальнейших размышлений об устойчивости материальных структур. Более подробно я изложил эти результаты в 2005 г. в журнале "Философские исследования".

Классическими устойчивыми материальными структурами являются механический и электромагнитный осцилляторы, внутреннее которых выражается одинаковыми дифференциальными уравнениями.

Идею о том, что атом водорода также можно рассматривать как электромагнитный осциллятор, я впервые опубликовал в 1958 г. в Ученых записках Коломенского пединститута. При этом роль конденсатора этого осциллятора играет "позитроний", состоящий из электрона, находящегося вне протона, и из позитрона, находящегося внутри протона, а роль катушки самоиндукции играет нейтрон, входящий в состав протона.

Физик К.Шарнгорст, с которым я обсуждал эту проблему, сообщил мне, что Нобелевский лауреат М.Гел-Манн в 1960-х годах установил, что внутри нейтрона находятся три "кварка", причем электрический заряд одного из них равен 2/3 заряда электрона, а электрический заряд каждого из двух остальных кварков равен 1/3 заряда позитрона.

Из этого я сделал вывод, что кварки можно рассматривать как сердечники катушек самоиндукции электромагнитного осциллятора, и внутреннее движение в атоме водорода состоит в том, что электрон падает на нейтрон, входит в него и движется по винтовой линии на поверхности одного из кварков, а затем возвращается в исходное положение, после чего это колебание повторяется снова, а позитрон движется по винтовым линиям на поверхностях сначала одного, а потом другого кварка, выходит из нейтрона, а затем падает на нейтрон и возвращается в исходное положение, и это колебание также повторяется снова. В отличие от классических осцилляторов энергия движения в атоме водорода не рассеивается в пространстве, поэтому колебания электрона и позитрона в атоме водорода не затухают. Дифференциальным уравнением этого движения является уравнение Шредингера.

При соединении 4 атомов водорода в один атом гелия два из 4-х позитрониев этих атомов превращаются в кванты света. Выделение энергии при этом процессе определяет излучение Солнца и лежит в основе водородной бомбы.

В статье в журнале "Философские исследования" рассматриваются и другие устойчивые материальные структуры, в частности, живые организмы и различные виды человеческого общества.

Добавления к моим книгам

В 2004 г, в журнале "Suhayl" я опубликовал добавление и исправления к моей книге с Ихсаноглу.

В 2006 г. в сборнике Научно-исследовательского института математики и механики при Казансом университете добавление и исправление к моей книге с М.П.Замаховским,

ЧАСТЬ ВТОРАЯ. МЫСЛИ

Глава 1.ПРОСТРАНСТВА И ГРУППЫ Пространства

В математике пространствами называются множества элементов, обычно именуемых точками, в которых выделены те или иные подмножества. В аффинных и проективных пространствах выделенные подмножества называются прямыми линиями, плоскостями и гиперплоскостями, в конформных и псевдоконформных пространствах - окружностями, сферами и гиперсферами, в топологических пространствах - замкнутыми множествами, а их дополнения - открытыми множествами. Выделенные подмножества удовлетворяют определенным условиям или аксиомам.

Если в множестве точек всяким двум точкам поставлено в соответствие число, удовлетворяющее определенным условиям, и называемое расстоянием между двумя точками, множество называетсз метрическим пространством. Два метрических пространства, между которыми установлено взаимно однозначное соответствие, сохраняющее расстояние, называются изометричными.

Точки пространств обычно определяются несколькими числами или элементами более сложных систем, называемых алгебрами. Эти числа или элементы называются координатами точек. Число независимых координат точек пространства называется размерностью пространства. Пространство размерости n называется n-мерным.. В аффинных и проективных пространствах можно ввести метрику с помощью квадратичных или эрмитовых форм от координат точек; полученные пространства называютая квадратичными и эрмитовыми евклидовыми, псевдоевклидовыми, неевклидовыми и симплектическими пространствами.

Аффинные, проективные, конформные и псевдоконформные пространства называются инцидентностными. Евклидовы, псевдоевклидовы и неевклидовы пространства являются метрическими.

Представление о пространстве как о множестве точек сложилось только в XIX-XX веках. В древности считалось, что линии, поверхности и пространство не состоят из точек, а только являются "геометрическими местами", в которых находятся точки.

Аксиомы топологического пространства очень просты: 1) все пространство - замкнутое множество, 2) "пустое множество", т.е. множество, не содержащее ни одной точки, также считается замкнутым, 3) объединение конечного числа замкнутых множеств замкнуто, 4) пересечение любой совокупности замкнутых множеств замкнуто.

В случае, когда замкнутым считается любое множество точек, пространство называется дискретным, в случае, когда замкнутыми множестами считаются только все пространстно и пустое множество, пространство называется тривиальным.


Рекомендуем почитать
Тайна генерала Болдырева

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Первый кинопродюсер России Александр Ханжонков

Брошюра рассказывает о творческой деятельности и нелегком жизненном пути первого российского кинопредпринимателя Александра Алексеевича Ханжонкова. Его имя можно поставить в ряд с именами выдающихся русских предпринимателей Третьякова, Морозова, Мамонтова, деятельность которых никогда не сводилась исключительно к получению прибыли – они ставили перед собой и решали задачи, сопряженные с интересами своего Отечества, народа и культуры. Его вклад в развитие российской кинематографии грандиозен, хотя в полной мере и недооценен.


Апостолы добра

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Храм Богов

Книга «Храм Богов» — это откровения общественного деятеля Павла Пашкова о нелегкой борьбе за леса России. Миллионы гектар девственной тайги сдают в аренду Китаю под уничтожение на 49 лет, а тех, кто пытается противостоять этому, запугивают или убивают. От границы с Финляндией до побережья Тихого океана — идет уничтожение лесов. Природа стала лишь объектом заработка очень больших денег. Мы стоим на последнем рубеже: пора отстоять нашу землю.


Переход через пропасть

Данная книга не просто «мемуары», но — живая «хроника», записанная по горячим следам активным участником и одним из вдохновителей-организаторов событий 2014 года, что вошли в историю под наименованием «Русской весны в Новороссии». С. Моисеев свидетельствует: история творится не только через сильных мира, но и через незнаемое этого мира видимого. Своей книгой он дает возможность всем — сторонникам и противникам — разобраться в сути процессов, произошедших и продолжающихся в Новороссии и на общерусском пространстве в целом. При этом автор уверен: «переход через пропасть» — это не только о событиях Русской весны, но и о том, что каждый человек стоит перед пропастью, которую надо перейти в течении жизни.


Так говорил Бисмарк!

Результаты Франко-прусской войны 1870–1871 года стали триумфальными для Германии и дипломатической победой Отто фон Бисмарка. Но как удалось ему добиться этого? Мориц Буш – автор этих дневников – безотлучно находился при Бисмарке семь месяцев войны в качестве личного секретаря и врача и ежедневно, методично, скрупулезно фиксировал на бумаге все увиденное и услышанное, подробно описывал сражения – и частные разговоры, высказывания самого Бисмарка и его коллег, друзей и врагов. В дневниках, бесценных благодаря множеству биографических подробностей и мелких политических и бытовых реалий, Бисмарк оживает перед читателем не только как государственный деятель и политик, но и как яркая, интересная личность.