Пространства, времена, симметрии - [75]
До Аполлония конические сечения рассматривались только как сечения прямого кругового конуса плоскостями перпендикулярными одной из прямолинейных образующих поверхности этого конуса. Поэтому параболу называли "сечением прямоугольного конуса", эллипс - "сечение остроугольного конуса", а гиперболу, под которой имели в виду только одну ее ветвь, - "сечением тупоугольного конуса".
Аполлоний рассматривал конические сечения как сечения поверхностей не только прямых, но и наклонных круговых конусов произвольными плоскостями, не проходящими через их вершины, и рассматривал также продолжения поверхностей конусов по другую сторону их вершин. При этом старые названия теряли смысл, и Аполлоний предложил новые названия конических сечений, применяемые и в настоящее время. Гиперболой Аполлоний, как и его предшественники, называл одну ее ветвь, а обе ветви гиперболы он называл "противоположными гиперболами".
Названия Аполлония "парабола", "эллипс" и "гипербола", означающее, соответственно, "приложение", "недостсток "и "избыток", были связаны с уравнениями конических сечений. Уравнения Аполлония этих сечений имели тот же вид, что и у его предшественников, но до Аполлония эти уравнения записывались только в прямоугольных координатах, осью абсцисс которых служила ось симметрии сечения, а Аполлоний записывал их как в прямоугольных, так и в косоугольных координатах, осью абсцисс которых служил произвольный диаметр сечения, а осью ординат - касательная к сечению в конце этого диаметра.
Аполлоний определял диаметр конического сечения как такую прямую, что при косом отражении от нее сечение переходит в себя. Это отражение является частным случаем аффинного преобразования, поэтому в "Конических сечениях" доказано много теорем аффинной геометрии. Из того, что конические сечения являются плоскими сечениями одного и того же кругового конуса, следует, что их можно получить центральным проектированием окружности круга и, значит их можно получить из окружности проективным преобразованием. Поэтому в "Конических сечениях" доказано много теорем проективной геометрии. Так как инверсия относительно окружности круга является частным случаем конформного преобразования, в "Коническх сечениях" доказано несколько теорем конформной геометрии.
Результаты первых 4 книг "Конических сечений" Аполлония являются обобщениями результатов "Начал конических сечений" Евклида, также состоящих из 4 книг. Следующие книги труда Аполлония содержат новые результаты не имеющие аналогов в работах его предшественников. Особенна важна V книга, в которой изложены важные теоремы дифференциальной геометрии.В этой книге определены нормали к коническим сечениям и эволюты этих сечений, т.е. огибающие семейств нормалей. Аполлоний приводит пропорции равносильные уравнениям этих эволют. В Конических сечениях не приводится вывод этих пропорций, который невозможен без знания элементов дифференциального исчисления.
Из остальных сочинений Аполлония сохранилось только одно математическое сочинение в средневековом арабском переводе, но о других сочинениях Аполлония сохранились свидетельства античных авторов.
Клавдий Птолемей в "Алмагесте" цитирует астрономическое сочинение Аполлония, в котором изложена теория движения планет с помощью деферентов и эпициклов. Витрувий в "Десяти книгах об архитектуре" упоминал изобретенный Аполлонием астрономический инструмент, в котором используется стереографическая проекция, теория которой основана на 5-м предложении I книги "Конических сечений".
В трактате "Плоские геометрические места"Аполлоний рассматривал преобразования подобия, инверсии относительно окружностей кругов, и более сложные круговые преобразования. В трактате Аполлония "Касания" решаются задачи о проведении окружности, касающейся трех объектов, которые могут быть точками, прямыми и кругами. По-видимому, при решении наиболее сложных из этих задач Аполлоний пользовался инверсией относительни круга.
В сочинениях Аполлония "Вставки" и "Общий трактат" исложены решения геометрических задач равносильных алгебраическим уравнениям высших порядков.
Из остальных математических сочинений Аполлония упомяну "Сравнение додекаэдра и икосаэдра", комментарии Гипсикла к которому присоединены к 13 книгам "Начал" Eвклида в виде XIV книги.
Публикации МЦНМО
В 2003 г. в издательстве "Московский центр непрерывного математического образования"(МЦНМО) была опубликована книга "Геометрия групп Ли. Симметрические, параболические и периодические пространства", написанная мной и М.П.Замаховским.
В 2004 г. была опубликована моя книга "Аполлоний Пергский", являющаяся научной биографией великого геометра.
Находится в печати русский оригинал книги "Эли Картан", написанный М.А.Акивисом и мной, к которой добавлены мои русские переводы речи Э.Картана на праздновании его 70-летия, статьи Э.Картана, посвященной 100-летию со дня рождения Софуса Ли, и французского оригинала лекции Картана о влиянии Франции на развитие математики.
Готовится к печати мой полный русский перевод "Коническх сечений" Аполлония с подробными комментариями.
Устойчивость материальных структур
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Брошюра рассказывает о творческой деятельности и нелегком жизненном пути первого российского кинопредпринимателя Александра Алексеевича Ханжонкова. Его имя можно поставить в ряд с именами выдающихся русских предпринимателей Третьякова, Морозова, Мамонтова, деятельность которых никогда не сводилась исключительно к получению прибыли – они ставили перед собой и решали задачи, сопряженные с интересами своего Отечества, народа и культуры. Его вклад в развитие российской кинематографии грандиозен, хотя в полной мере и недооценен.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Храм Богов» — это откровения общественного деятеля Павла Пашкова о нелегкой борьбе за леса России. Миллионы гектар девственной тайги сдают в аренду Китаю под уничтожение на 49 лет, а тех, кто пытается противостоять этому, запугивают или убивают. От границы с Финляндией до побережья Тихого океана — идет уничтожение лесов. Природа стала лишь объектом заработка очень больших денег. Мы стоим на последнем рубеже: пора отстоять нашу землю.
Данная книга не просто «мемуары», но — живая «хроника», записанная по горячим следам активным участником и одним из вдохновителей-организаторов событий 2014 года, что вошли в историю под наименованием «Русской весны в Новороссии». С. Моисеев свидетельствует: история творится не только через сильных мира, но и через незнаемое этого мира видимого. Своей книгой он дает возможность всем — сторонникам и противникам — разобраться в сути процессов, произошедших и продолжающихся в Новороссии и на общерусском пространстве в целом. При этом автор уверен: «переход через пропасть» — это не только о событиях Русской весны, но и о том, что каждый человек стоит перед пропастью, которую надо перейти в течении жизни.
Результаты Франко-прусской войны 1870–1871 года стали триумфальными для Германии и дипломатической победой Отто фон Бисмарка. Но как удалось ему добиться этого? Мориц Буш – автор этих дневников – безотлучно находился при Бисмарке семь месяцев войны в качестве личного секретаря и врача и ежедневно, методично, скрупулезно фиксировал на бумаге все увиденное и услышанное, подробно описывал сражения – и частные разговоры, высказывания самого Бисмарка и его коллег, друзей и врагов. В дневниках, бесценных благодаря множеству биографических подробностей и мелких политических и бытовых реалий, Бисмарк оживает перед читателем не только как государственный деятель и политик, но и как яркая, интересная личность.