Пространства, времена, симметрии - [116]
В главе "Пенсильвания"я подробно описал историю публикации английского перевода математического трактата Улугбека с его арабским текстом в статье, написанной мной вмесе с Я.П.Хогендайком.
В 2000 г. в родном городе ал-Каши Кашане состоялся международный конгресс, повященный 600-летию ал-Каши. На этом конгрессе М.М.Рожанская прочла мой доклад о трактатах ал-Каши и Улугбека об определении синуса 1о.
Гипергеометрические названия степеней в Европе
Выше я упоминал, что названия степеней в "Арифметике" Диофанта были аддитивные, т.е.квадрато-кубом он называл 5-ю степень (5=2+3).
Такие же названия степеней применяли ат-Туси, ал-Каши и другие математики, писавшие на арабском языке.
Однако индийские математики применяли более сложную систему названий степеней: для тех степеней, которые можно представить как произведения чисел 2 и 3, они пользовались мультипликативными названиями, т.е. называли квадрато-кубом не 5-ю, а 6-ю степень (2.3=6), но для тех степеней, которые нельзя представить в виде произведений чисел 2 и 3, они пользовались аддитивными названиями с добавлением специального термина, указывающего, что это название аддитивное.
Французский историк науки Поль Таннери обнаружил один случай применения мультипликативных названий у греков - он нашел текст современника Диофанта александрийского христианского епископа Анатолия, который называл 5-ю степень первым невыразимым (protos alo- gos), 6-ю степень квадрато-кубом, а 7-ю степень - вторым невыразимым (deuteros alogos).
Текст, обнаруженный Таннери, позволил мне проанализировать названия степеней у итальянских и немецких алгебраистов эпохи Возрождения. Итальянский математик Лука Пачоли (1454-1514) в своей книге "Сумма [знаний] по арифметике, геометрии, отношениям и пропорциональности" называл квадрат censо, куб - cubo, 4-ю степень - censo de censo, 5-ю степень - primo relato, 6-ю степень -censo de cubo, 7-ю степень - secondo relato и т.д.
Джироламо Кардано (1501-1576) в своем "Великом искусстве алгебраических правил" пользовался аналогичными латинскими названиями, вместо слова relato он писал relatum. Я в статьях и в книге "История математики с древнейших времен" объяснял эти термины как искаженные переводы термина alogos. Это слово можно перевести не только как "невыразимое", но и как "не-отношение". По-видимому, первоначально это слово было переведено в его втором значении словами irrelato и irrelatum, которые впоследствии потеряли приставку ir-.
От итальянских алгебраистов, которые, следуя арабам, называли неизвестную величину "вещью" (cosa), aлгебра попала в Германию, где ее стали называть Coss - от итальянского слова cosa, поэтому немецких алгебраистов той эпохи называют коссистами. Как и итальянские алгебраисты, коссисты пользовались мультипликативной системой названий степеней. Они называли неизвестную величину Res ("вещь" на латыни), квадрат - Zensus, куб - Cubus, 4-ю степень - Zеnsus Zensi, 5-ю - Sursolidum, 6-ю Zensus Cubi, 7-ю - Bissursolidum и далее все "невыразимые" степни - словом sursolidum с добавлением сокращений латинских числительных ter-, quadr-, quint- и т. д. Слово sursolidum первоначально имело вид surdesolidum, от латинских слов surdus - "глухой", которым часто переводили греческое слово alogos (в частности, для обозначения иррациональных величин и чисел), слово solidum - "тело" появилось, по-видимому, по аналогии со словом "куб". Впоследствии слово sursolidum стали понимать как "сверхтело" и в латинских текстах заменять его словом supersolidum.
Эта "гипергеометрическая" терминология привела самого крупного коссиста Михаэля Штифеля (1487-1567) к идее многомерного пространства. В своей обработке книги "Coss" Христофа Рудольфа Штифель предложил "выйти за пределы куба" и, называя куб "телесной точкой", рассматривать далее "телесную линию", "телесный квадрат", "телесный куб" и т. д.
Сферическая геометрия и тригонометрия в Европе
В моей книге "История неевклидовой геометрии" я подробно рассмотрел историю сферической геометрии и тригонометрии в Европе.
Теорему косинусов сферической тригонометрии, которая в трудах индийских и арабских астрономов встречалась только в астрономических правилах, впервые сформулировал как математическую теорему Региомонтан (1436 -1476) в "Пяти книгах о треугольниках всякого рода". Чертеж Региомонтана к этой теореме совпадает с чертежом ал-Баттани в его астрономических таблицах. Поэтому европейцы приписывали эту теорему ал-Баттани и называли ее "теоремой Альбатегния". Эта теорема для сферического треугольника АВС со сторонами а, b, с выражается формулой cosa = cosb cosc + sinb sine cos A.
Двойственную терему косинусов, выражаемую для того же сферического треугольника формулой
cosA = -cosBcosC + sinBsinCcosa,
впервые доказал Франсуа Виет (1548-1603 ) в его "VIII книге ответов на различные математические вопросы".
Площадь сферического треугольника АВС, выражаемая формулой
S =r2(A+B+C-n),
где углы А, В и С выражены в радианной мере, нашел Альбер Жирар (15951632) в работе "О мере поверхности сферических треугольников и многоугольников".
Далее в "Истории неевклидовой геометрии" я рассматривал работы по сферической тригонометрии Леонарда Эйлера (1707-1783) и математиков его школы.
Командующий американским экспедиционным корпусом в Сибири во время Гражданской войны в России генерал Уильям Грейвс в своих воспоминаниях описывает обстоятельства и причины, которые заставили президента Соединенных Штатов Вильсона присоединиться к решению стран Антанты об интервенции, а также причины, которые, по его мнению, привели к ее провалу. В книге приводится множество примеров действий Англии, Франции и Японии, доказывающих, что реальные поступки этих держав су щественно расходились с заявленными целями, а также примеры, раскрывающие роль Госдепартамента и Красного Креста США во время пребывания американских войск в Сибири.
Ларри Кинг, ведущий ток-шоу на канале CNN, за свою жизнь взял более 40 000 интервью. Гостями его шоу были самые известные люди планеты: президенты и конгрессмены, дипломаты и военные, спортсмены, актеры и религиозные деятели. И впервые он подробно рассказывает о своей удивительной жизни: о том, как Ларри Зайгер из Бруклина, сын еврейских эмигрантов, стал Ларри Кингом, «королем репортажа»; о людях, с которыми встречался в эфире; о событиях, которые изменили мир. Для широкого круга читателей.
Борис Савинков — российский политический деятель, революционер, террорист, один из руководителей «Боевой организации» партии эсеров. Участник Белого движения, писатель. В результате разработанной ОГПУ уникальной операции «Синдикат-2» был завлечен на территорию СССР и арестован. Настоящее издание содержит материалы уголовного дела по обвинению Б. Савинкова в совершении целого ряда тяжких преступлений против Советской власти. На суде Б. Савинков признал свою вину и поражение в борьбе против существующего строя.
18+. В некоторых эссе цикла — есть обсценная лексика.«Когда я — Андрей Ангелов, — учился в 6 «Б» классе, то к нам в школу пришла Лошадь» (с).
У меня ведь нет иллюзий, что мои слова и мой пройденный путь вдохновят кого-то. И всё же мне хочется рассказать о том, что было… Что не сбылось, то стало самостоятельной историей, напитанной фантазиями, желаниями, ожиданиями. Иногда такие истории важнее случившегося, ведь то, что случилось, уже никогда не изменится, а несбывшееся останется навсегда живым организмом в нематериальном мире. Несбывшееся живёт и в памяти, и в мечтах, и в каких-то иных сферах, коим нет определения.
Патрис Лумумба стоял у истоков конголезской независимости. Больше того — он превратился в символ этой неподдельной и неурезанной независимости. Не будем забывать и то обстоятельство, что мир уже привык к выдающимся политикам Запада. Новая же Африка только начала выдвигать незаурядных государственных деятелей. Лумумба в отличие от многих африканских лидеров, получивших воспитание и образование в столицах колониальных держав, жил, учился и сложился как руководитель национально-освободительного движения в родном Конго, вотчине Бельгии, наиболее меркантильной из меркантильных буржуазных стран Запада.