Пространства, времена, симметрии - [102]

Шрифт
Интервал

Сочинение Гиппократа восходит к недошедшему до нас математическому сочинению Демокрита. Явно демокритовский характер носит I определение "Начал" - "Точка - то, что не имеет частей".

Однако в целом книга Евклида основана на математических принципах Аристотеля и содержит теорему о том, что любой отрезок может быть разделен пополам. По-видимому, восходит к принципу Аристотеля и V постулат Евклида.

"Оптика" Евклида была основана на представлении о зрительных лучах, выходящих из глаза и "ощупывающих" видимые предметы. Само слово "оптика" происходит от греческого слова opsis - "зрительный луч". Сравнивая "Оптику" и "Начала" Евклида я убедился, что "Оптика" основана не на учении Аристотеля, а на учении Демокрита.

Архимед

Величайшим ученым древности являлся Архимед (ок. 290-212 до н.э.) он был и математиком и механиком и физиком и инженером. Я рассматривал многие сочинения Архимеда. Если Евклид для круглых фигур и тел определял только отношения их площадей и объемов, Архимед нашел площадь круга, объем шара и объемы других круглых тел. Архимед также определил площадь сегмента параболы и решил ряд других задач, которые в настоящее время решаются с помощью интегрального и дифференциального исчислений. Я рассмотрел в книге Архимеда "Леммы" задачу об арбелоне, т.е. фигуре, полученной из полукруга с диаметром a+b удалением из него двух полукругов с диаметрами a и b, которые являются отрезками диаметра большего полукруга. Архимед нашел, что площадь арбелона равна площади круга, диаметром которого является перпендикуляр восставленный к диаметру большего полукруга в точке касания малых полукругов. Я доказал, что эта задача равносильна теореме геометрической алгебры о разбиении квадрата со стороной a+b на два квадрата с площадями a2 и b2 и два прямоугольника с площадями ab, так как площади полукругов равны, соответственно, n(a+b)2/8, na2/8 и nb2/8, a площадь круга равного арбелону равна nab/4. Во время осады римлянами Сиракуз, где жил Архимед, он был душей обороны города и его технические ухищрения наводили ужас на римлян. В частности, Архимед сжигал корабли римлян, выстраивая солдат с медными щитами таким образом, что их щиты образовывали часть поверхностьи параболоида вращения, ось которого была направлена на Солнце, а фокус был в том месте, где находился римский корабль. Недавно греческий инженер Иоаннис Сакас воспроизвел сожжение корабля по методу Архимеда. Сожжение римских кораблей показывает, что Архимеду были известны фокальные свойства параболы и параболоида вращения. На могиле Архимеда в Сиракузах был поставлен камень, на котором выгравировано изображение цилиндра с вписанными в него конусом и шаром. Этот чертеж относится к одному из самых замечательных математических достижений Архимеда - выводу формулы объема шара. В своем послании к Эратосфену Архимед рассматривал прямой круговой цилиндр, высота которого равна радиусу его основания. Обозначим диаметр шара буквой D. В цилиндр вписаны прямой круговой конус, основание которого совпадает с нижним основанием цилиндра, а вершина - с центром А его верхнего основания, и шар, полюсы которого совпадают с центрами А и В верхнего и нижнего оснований цилиндра. Сечения этих трех тел плоскостью параллельной основаниям цилиндра на расстоянии х от точки А равны, соответственно, nD>2, nx>2 и nx(D-x). Архимед рассматривал эти сечения как материальные пластинки, веса которых равны их площадям. Он заметил, что если перенести сечения конуса и шара в точку С оси цилиндра, находящуюся на расстоянии D выше точки А, а сечение цилиндра оставить на месте и рассматривать линию САВ как рычаг с точкой опоры А, то моменты сечений цилиндра, конуса и шара будут равны, соответственно, nD>2x, nDx>2 и nD>2x-nDx>2. Поэтому перенесенные сечения конуса и шара будут уравновешивать сечение цилиндра. Архимед считал, что если равновесие имеет место для весов отдельных сечений, оно будет иметь место и для сумм этих весов. Суммой весов сечений тела Архимед считал вес всего этого тела, т.е. его объем. Если мы обозначим объемы цилиндра, конуса и шара, соответственно, V, V>k, и V, то сумма моментов перенесенных сечений равна VD+VD, a сумма моментов сечений цилиндра равна произведению его объема на расстояние от точки А до его центра тяжести, т.е. VuD/2. Taк как V,<=V4/3, мы получаем, что v^vu/2-v4/3=vu/6 или, так как Vц=nD3, Vш=nD3/6. Если обозначить D =2R, мы можем переписать последнюю формулу в виде Vш = (4/3)nR3. Рассуждения Архимеда напоминают рассуждения Демокрита, но сечения тел у Архимеда не имеют конечной толщины, как у Демокрита, и между ними нет конечных расстояний, как у Пифагора. Поэтому у Архимеда сечения, из которых состоят тела больше похожи не на атомы античных атомистов, а на элементы множеств современной теоретико-множественной математики.

Аполлоний

Самым блестящим математиком античности был Аполлоний Пергский (ок. 250 - ок.175 до н.э.). Я изучал его труды еще в Москве при подготовке "Хрестоматии по истории математики" и позже, когда я рассматривал происхождение стереографической проекции и инверсии относительно конических сечений. Более интенсивно я стал изучать труды Аполлония в Стейт Колледже всвязи с руководством мастерской и докторской диссертациями моей аспирантки Д.Родс.


Рекомендуем почитать
Багдадский вождь: Взлет и падение... Политический портрет Саддама Хусейна на региональном и глобальном фоне

Авторы обратились к личности экс-президента Ирака Саддама Хусейна не случайно. Подобно другому видному деятелю арабского мира — египетскому президенту Гамалю Абдель Насеру, он бросил вызов Соединенным Штатам. Но если Насер — это уже история, хотя и близкая, то Хусейн — неотъемлемая фигура современной политической истории, один из стратегов XX века. Перед читателем Саддам предстанет как человек, стремящийся к власти, находящийся на вершине власти и потерявший её. Вы узнаете о неизвестных и малоизвестных моментах его биографии, о методах руководства, характере, личной жизни.


Уголовное дело Бориса Савинкова

Борис Савинков — российский политический деятель, революционер, террорист, один из руководителей «Боевой организации» партии эсеров. Участник Белого движения, писатель. В результате разработанной ОГПУ уникальной операции «Синдикат-2» был завлечен на территорию СССР и арестован. Настоящее издание содержит материалы уголовного дела по обвинению Б. Савинкова в совершении целого ряда тяжких преступлений против Советской власти. На суде Б. Савинков признал свою вину и поражение в борьбе против существующего строя.


Лошадь Н. И.

18+. В некоторых эссе цикла — есть обсценная лексика.«Когда я — Андрей Ангелов, — учился в 6 «Б» классе, то к нам в школу пришла Лошадь» (с).


Кино без правил

У меня ведь нет иллюзий, что мои слова и мой пройденный путь вдохновят кого-то. И всё же мне хочется рассказать о том, что было… Что не сбылось, то стало самостоятельной историей, напитанной фантазиями, желаниями, ожиданиями. Иногда такие истории важнее случившегося, ведь то, что случилось, уже никогда не изменится, а несбывшееся останется навсегда живым организмом в нематериальном мире. Несбывшееся живёт и в памяти, и в мечтах, и в каких-то иных сферах, коим нет определения.


Патрис Лумумба

Патрис Лумумба стоял у истоков конголезской независимости. Больше того — он превратился в символ этой неподдельной и неурезанной независимости. Не будем забывать и то обстоятельство, что мир уже привык к выдающимся политикам Запада. Новая же Африка только начала выдвигать незаурядных государственных деятелей. Лумумба в отличие от многих африканских лидеров, получивших воспитание и образование в столицах колониальных держав, жил, учился и сложился как руководитель национально-освободительного движения в родном Конго, вотчине Бельгии, наиболее меркантильной из меркантильных буржуазных стран Запада.


Так говорил Бисмарк!

Результаты Франко-прусской войны 1870–1871 года стали триумфальными для Германии и дипломатической победой Отто фон Бисмарка. Но как удалось ему добиться этого? Мориц Буш – автор этих дневников – безотлучно находился при Бисмарке семь месяцев войны в качестве личного секретаря и врача и ежедневно, методично, скрупулезно фиксировал на бумаге все увиденное и услышанное, подробно описывал сражения – и частные разговоры, высказывания самого Бисмарка и его коллег, друзей и врагов. В дневниках, бесценных благодаря множеству биографических подробностей и мелких политических и бытовых реалий, Бисмарк оживает перед читателем не только как государственный деятель и политик, но и как яркая, интересная личность.