Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [47]

Шрифт
Интервал

Неэвклидова геометрия, описанная Лобачевским в 1830-х годах, с этой точки зрения воспринималась как философская ересь. Работа Римана была куда большей ересью; в этом могла состоять причина, по которой он представил свои мысли на уровне столь большой общности, что их связь с неэвклидовой геометрией должна была ускользнуть от всех, кроме наиболее математически подкованных людей в сидевшей перед ним аудитории. (Но, конечно, не от Гаусса. Гаусс на самом деле еще ранее сам изобрел неэвклидову геометрию, но не опубликовал своих результатов из опасений, как он писал, «что болваны поднимут шум и гам». В XIX столетии немцы относились к своей философии весьма серьезно.)

В статье из уже упоминавшегося «Словаря научных биографий» Ханс Фрейденталь говорит о философских способностях Римана следующее.

Один из глубочайших и наиболее одаренных воображением умов среди математиков всех времен, он испытывал сильную тягу к философии и на самом деле был великим философом. Если бы он жил и творил дольше, философы признали бы за ним членство в своем цехе.

Я недостаточно подготовлен для того, чтобы судить об истинности этого высказывания. Однако с чем я могу согласиться от всего сердца, так это с другим замечанием Фрейденталя: «Стиль Римана, на который повлияла философская литература, демонстрирует худшие черты немецкого синтаксиса; этот стиль должен представляться шифром всякому, кто не постиг немецкий язык во всей его глубине». Сознаюсь, что хотя у меня есть экземпляр собрания трудов Римана в немецком оригинале — а это один том в 690 страниц — и хотя я приложил все старания, чтобы разобраться в его словах там, где он отклоняется от непосредственно математического изложения, как, например, в своей знаменитой лекции, мое знакомство с его великими мыслями главным образом основано на переводах и вторичных источниках.[72]


VI.

Дедекинд получил вторую степень вскоре после Римана, и оба математика начали преподавание в осенне-зимнем семестре 1854 года; Риману исполнилось 28, а Дедекинду 23. Впервые в жизни Риман получал жалованье. Однако вряд ли это было серьезное жалованье. Преподавателям обычно платили посещавшие их лекции студенты (формально университет переводил плату за обучение от студентов к преподавателям). В то время в Геттингене было немного студентов, изучавших математику, — первая лекция Римана собрала их в количестве восьми — и лекции нередко отменялись из-за того, что не было записавшихся. По-видимому, Риман и Дедекинд ходили на лекции друг друга, хотя мне и не удалось установить, платили ли они друг другу за обучение.

Следующая проблема состояла в том, что Риман, по-видимому, не был хорошим лектором. Дедекинд откровенно высказывается по этому поводу:

Нет никаких сомнений, что в течение первых лет его академической карьеры чтение лекций было сопряжено для Римана со значительными трудностями. Его блестящий интеллект и прозорливость обычно не были заметны. Что было заметно, — так это значительные скачки в логике изложения — скачки, которые нелегко давались более слабым умам. Если его просили дать разъяснения по поводу пропущенной связи вещей, то он приходил в волнение и не мог приспособиться к более медленному ходу мыслей вопрошающего. <…> Его попытки судить о том, не слишком ли быстро он продвигается, по реакции своих слушателей, также сбивали его всякий раз, когда, вопреки его ожиданиям, слушатели давали ему понять, что следует остановиться на доказательстве какого-то момента, который ему самому представлялся совершенно понятным.

Дедекинд, отзывающийся о герое своих записей с неизменной симпатией, далее утверждает, что с годами риманова манера чтения лекций улучшилась. Не исключено, что это правда, но сохранившиеся письма студентов Римана показывают, что даже в 1861 году «его мысли часто подводили его, и он был не в состоянии объяснить простейшие вещи». Отношение к этой проблеме самого Римана было, как всегда, достаточно трогательным. После своей первой лекции, состоявшейся 5 октября 1854 года, он пишет отцу: «Надеюсь, что через полгода мне будет легче с моими лекциями и мысль о них не будет отравлять моего пребывания в Квикборне и нашего с тобой общения, как это случилось в прошлый раз». Он был безнадежно застенчивым человеком.


VII.

Самым крупным событием того осенне-зимнего семестра стала смерть Гаусса 23 февраля 1855 года, в возрасте 77 лет. Он находился в добром здравии до самого конца и умер внезапно, от сердечного приступа, сидя в своем любимом кресле в дорогой его сердцу обсерватории.[73]

Профессорскую должность Гаусса сразу же предложили Дирихле, который принял приглашение и уже через несколько недель прибыл в Геттинген. С учетом того, сколь великодушно Дирихле отнесся к нему в Берлине, а также тесного общения между ними в 1852 году во время приезда Дирихле в Геттинген, Риман должен был воспринять это с воодушевлением. А мозг Гаусса, кстати, был забальзамирован и оставлен на хранение на факультете физиологии Геттингенского университета, где находится и поныне.

Дирихле также был воодушевлен; в Берлине ему приходилось слишком много работать. Насчет воодушевления его жены полной уверенности нет. Привыкнув к берлинскому высшему обществу, Ребекка Дирихле, урожденная Мендельсон, должна была счесть Геттинген тоскливым и провинциальным. Она изо всех сил старалась скрасить свое пребывание там, устраивая балы — Дедекинд упоминает, что на одном из них присутствовало от 60 до 70 человек, — и вечера музыки в берлинском стиле. Сам Дедекинд, будучи человеком и светским, и музыкальным, расцвел в таком окружении. С Риманом, конечно, все обстояло наоборот, и если его другу хотя бы иногда удавалось затащить его на одно из таких мероприятий, то бедному Риману, должно быть, приходилось в муках терпеть, пока оно не закончится.


Рекомендуем почитать
Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.