Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике [заметки]

Шрифт
Интервал

1

Никола Орем (Nicole d'Oresme) был не только математиком, но и естествоиспытателем, философом, физиком, астрономом и экономистом, а также воспитателем Дофина, будущего короля Карла V. (Примеч. перев.)

2

Стандартным русским словосочетанием является также математический анализ (или матанализ, как говорят, например, все те студенты, которые не называют его просто матаном). В переводе в подавляющем большинстве случаев оставлен просто «анализ», чего достаточно для передачи сути дела. Соответственно, прилагательное «аналитический» означает «[изучаемый или выраженный] средствами анализа». (Примеч. перев.)

3

Точнее, сумма некоторого числа членов гармонического ряда. (Примеч. перев.)

4

То есть для того, чтобы приблизиться к пределу — в данном случае к числу π — с хорошей точностью, надо брать члены последовательности с достаточно большими номерами. (Примеч. перев.)

5

Силы французской армии «Север» под командованием Франсуа Дюмурье и французской армии «Центр» под командованием Франсуа-Кристофа Келлермана остановили продвижение армии под командованием герцога Брауншвейгского Карла Вильгельма Фердинанда. Артиллерийское сражение оказалось тактически безрезультатным, но стратегически важным как доказательство жизнеспособности Французской революции. Книга «Пятнадцать решающих битв в мировой истории» вышла в 1851 г. (Примеч. перев.)

6

Этот исторический факт я усвоил, когда ходил в Англии в школу, с помощью следующей песенки викторианских времен:

Георг был Первый трусом; даже
Второй был ненамного гаже.
И не сыскал никто на свете
Достойных черт в Георге Третьем.
Когда ж Георг Четвертый помер —
То, к счастью, был последний номер.
(Пер. М. Визеля.)

На самом деле Георги на этом не закончились — в XX веке их было еще двое. (Здесь и далее не отмеченные особо примечания принадлежат автору.)

7

И математик, один из создателей дифференциального и интегрального исчисления (в частности, автор современного обозначения для интеграла). (Примеч. перев.)

8

Другой мощный подъем Эльбы произошел в 1962 г. и вызвал значительные жертвы и разрушения в районе Вендланд. После этого возвели систему крупных дамб. В августе 2002 г., как раз во время завершения моей работы над книгой, Эльба снова вышла из берегов. Однако сооруженные в 1962 г. дамбы выдержали напор, и регион пострадал меньше других, расположенных выше по течению.

9

Эрвин Нейеншвандер — профессор истории математики в Цюрихском университете. Он является главным авторитетом по жизни и творчеству Бернхарда Римана; он издал письма Римана. Я использовал в этой книге результаты его исследований. Я также многое взял из двух единственных изданных на английском книг, в которых удалось найти сколько-нибудь обстоятельный рассказ о Римане: «Риман, топология и физика» Михаила Монастырского (перевод 1998 г., выполненный Роджером Куком, Джеймсом Кингом и Викторией Кинг) и «Бернхард Риман, 1826-1866» Детлефа Лаугвитца (перевод 1999 г., выполненный Абе Шенитцером). Хотя это математические биографии — т.е. в них больше математики, чем биографических фактов, — обе книги позволяют составить хорошее представление о самом Римане и о его времени и содержат много ценных наблюдений. (См.: Монастырский М.И. Бернхард Риман. Топология. Физика. М.: Янус-К, 1999. — Примеч. перев.)

10

Еще бы не изматывали. 38 миль по прямой — это 10 часов ходьбы быстрым шагом.

11

Ганновер стал королевством только в 1814 г. До этого его правители носили титул курфюрста, означавший их право участвовать в выборах императора Священной Римской империи. Священная Римская империя прекратила свое существование в 1806 г.

12

Эрнст-Август был предпоследним королем Ганновера. В 1866 г. это королевство стало частью Прусской империи, что оказалось поворотным моментом в создании современной Германии. (Носивший титул герцога Камберлендского Эрнст-Август был пятым сыном Георга III. Королева Виктория была дочерью его старшего брата Эдуарда, герцога Кентского, умершего в 1828 г. — Примеч. перев.)

13

Оценки разнятся, но Гаусса почти всегда ставят в число первых трех — как правило, вместе с Ньютоном и Эйлером или Архимедом.

14

Генрих Вебер и Рихард Дедекинд подготовили первое издание в 1876 г. Самое последнее издание «Собрания трудов», составленное Рагаваном Нарасимханом, вышло в 1990 г. Кстати, по-немецки «собрание трудов» — Gesamelte Werke, и эти слова так часто встречаются в математической литературе, что, по моим наблюдениям, англоговорящие математики употребляют их по-немецки, совершенно не отдавая себе в этом отчета.

15

Абелева функция — это многозначная функция, получаемая при обращении интегралов определенного вида. Данное название не имеет широкого распространения в наше время. Мы упомянем многозначные функции в главе 3, теорию функций комплексной переменной в главе 13, а обращение интегралов — в главе 21.

16

Используя уже утвердившийся у нас американизм — «полным профессором». В этих же терминах «экстраординарный профессор» — это Assistant Professor, что до некоторой степени соответствует российскому доценту. (Примеч. перев.)

17

Вот только один пример неожиданного появления числа e. Возьмем случайное число, заключенное между 0 и 1. Теперь возьмем другое и прибавим его к первому. Продолжим так поступать, накапливая случайные числа. Сколько в среднем случайных чисел потребуется, чтобы сумма оказалась больше, чем 1? Ответ: 2,71828….

18

Одно из великих математических открытий Античности, сделанное Пифагором или одним из его учеников около 600 г. до P.X., состояло в том, что не всякое число есть целое или дробь. Например, квадратный корень из 2, без сомнения, не является целым. Грубая арифметика показывает, что он лежит где-то между 1,4 (которое в квадрате дает 1,96) и 1,5 (которое в квадрате дает 2,25). Это, однако, и не дробь. Доказательство таково. Пусть S обозначает множество положительных целых чисел n, для которых выполнено такое свойство: n√2 — также положительное целое число. Если множество S не пусто, в нем есть наименьший элемент. (Любое непустое множество положительных целых чисел имеет наименьший элемент.) Обозначим этот наименьший элемент буквой k. Теперь образуем число u = (√2 − 1)k. Легко видеть, что (i) u меньше, чем k, (ii) u — положительное целое и (iii) u√2 — также положительное целое, так что (iv) u лежит в множестве S. Это противоречие, поскольку мы определили k как наименьший элемент из S, и, следовательно, предположение, из которого мы исходили, — что S не пусто — должно быть ложным. Следовательно, множество S пусто. Следовательно, нет положительного целого числа n, для которого n√2 — положительное целое число. Следовательно, √2 — не дробь. Число, которое не является ни целым, ни дробным, называется «иррациональным», поскольку оно не есть отношение (ratio) двух целых чисел.

19

Правило знаков: минус умножить на минус дает плюс. Многие люди застревают в арифметике именно на этом месте. Они спрашивают: «Что это значит — умножить отрицательное на отрицательное?» Лучшее объяснение, какое мне приходилось встречать, принадлежит Мартину Гарднеру. Оно таково. Рассмотрим большую аудиторию, в которой находятся два типа людей: хорошие и плохие. Определим «сложение» как «приглашение людей в аудиторию». Определим «вычитание» как «удаление людей из аудитории». Определим «положительный» как «хороший» (имея в виду «хороших людей»), а «отрицательный» — как «плохой». Прибавление положительного числа означает, что в аудиторию приходит сколько-то хороших, что несомненно повышает в ней уровень «хорошести». Прибавление отрицательного числа означает, что в аудиторию приходят плохие парни, что понижает суммарный уровень «хорошести». Вычитание положительного числа означает, что наружу выходит сколько-то хороших, и суммарный уровень «хорошести» понижается. Вычитание отрицательного числа означает уход нескольких плохих, в результате чего суммарная «хорошесть» повышается. Таким образом, прибавление отрицательного числа — это все равно что вычитание положительного, а вычитание отрицательного — все равно что прибавление положительного. Умножение — это просто кратное сложение. Минус три умножить на минус пять? Попросим выйти пятерых плохих парней. Повторим это три раза. Результат? Суммарная «хорошесть» увеличилась на 15… (Когда я проверил это на шестилетнем Дэниеле Дербишире, он сказал: «А что, если ты попросишь плохих парней выйти, а они не выйдут?» Философ-моралист в процессе становления!)

20

В отличие от распространенного американского обозначения log принятое у нас обозначение ln уже содержит напоминание не только о логарифме (буква l), но и о том, что это натуральный (т.е. в некотором смысле естественный) логарифм (буква n). Заметим попутно, что «стандартные» функции типа логарифма записываются, как правило, без скобок вокруг аргумента, если этот аргумент достаточно прост (например, выражается одной буквой N или x). (Примеч. перев.)

21

Георг был последним королем Ганновера. После сделанного в 1866 г. неудачного выбора, на чьей стороне воевать в австро-прусской войне, это королевство было в том же году поглощено Пруссией. Медаль, по-видимому, была отлита лишь к столетию Гаусса в 1877 г.

22

Среди разнообразных обстоятельств, позволявших герцогу притязать на славу, стоит, пожалуй, отметить, что он был отцом Каролины Брауншвейгской, вышедшей замуж за английского принца-регента. Брак оказался несчастным, и Каролина уехала из Англии. Но когда принц взошел на трон под именем Георга IV, она вернулась и предъявила свои права в качестве королевы. Это привело к незначительному конституционному кризису и одновременно к значительному увеселению публики по поводу стеснительного положения, в которое попал король, а также из-за довольно надменного характера его королевы, ее своеобразных личных привычек и вопиющих связей. Немалой популярностью пользовалась песенка:

Мадам, мы умоляем Вас
Оставить блуд, покинуть нас;
Но если выбирать одно —
Вы нас покиньте все равно.
(Пер. М. Визеля.)

Одна из теток герцога по материнской линии вышла замуж за императора Священной Римской империи и родила Марию-Терезию, великую императрицу Габсбургского дома. Другая вышла за Алексея Романова и стала матерью Петра II, номинального царя, в то самое время, когда Леонард Эйлер сходил с корабля в Санкт-Петербурге (раздел VI этой главы). Стоит только углубиться в генеалогию всех этих мелких германских правителей, как уже нельзя остановиться.

23

Не забыл ли я упомянуть, что, будучи из ряда вон выходящим математическим гением и первоклассным физиком, Гаусс был еще и блестящим астрономом, первым, кто правильно вычислил орбиту астероида?

24

После кометы Галлея — вторая комета, последовательные зафиксированные появления которой были после трудоемких вычислений связаны с одним и тем же космическим телом. (Примеч. перев.)

25

Чтобы узнать, является ли простым некоторое число N, надо просто делить его по очереди на числа 2, 3, 5, 7, … до тех пор, пока или одно из них не разделит N нацело, что будет означать, что N не простое, или… или что? Как узнать, когда остановиться? Ответ: остановиться надо, когда простое, на которое вы собрались разделить, оказывается больше, чем √N.Если, скажем, N равно 47, то √N = 6,85565…, так что надо проверить только делимость на 2, 3 и 5. Если ни одно из них не делит 47, то, значит, 47 — простое. Почему не надо проверять 7? Потому что 7×7 = 49, так что, если бы число 7 точно делило 47, частное было бы каким-то числом, меньшим 7. Аналогично, √701000 равен 837,2574. Последнее простое число ниже этого равно 829, а следующее простое выше этого есть 839. Если бы 839 делило 701000, то частное было бы числом, меньшим 839 — или некоторым простым, меньшим 839 (которое, следовательно, уже было проверено), или же составным, равным произведению еще меньших простых сомножителей…

26

Лежандр умер в нищете из-за того, что своей принципиальной позицией разгневал политических покровителей. Мне неловко, что я представил его здесь как вечно сердитого и слегка комического персонажа. Лежандр (1752-1833) был прекрасным математиком, одним из лучших во втором ряду, и в течение многих лет получал очень ценные результаты. Его «Элементы геометрии» были главным элементарным учебником по этому предмету в течение более чем столетия. Говорят, что именно эта книга побудила Эвариста Галуа — человека с трагической судьбой (от лица которого ведется повествование в романе Тома Пециниса «Французский математик») — выбрать своим занятием математику. Для нашего рассказа более существенно, что его книгу «Теория чисел» — переименованное третье издание упомянутых «Очерков» — школьный учитель дал почитать юноше Бернхарду Риману, который вернул ее менее чем через неделю со словами «Поистине прекрасная книга. Я теперь знаю ее наизусть». В книге было 900 страниц.

27

Русское издание: М.: Просвещение, 1979. (Примеч. перев.)

28

О числе Эйлера-Маскерони очень хорошо рассказано в главе 9 «Книги чисел», написанной Джоном Конуэем и Ричардом Гаем. Хотя я толком не описал его в данной книге, очень внимательный читатель заметит, как число Эйлера-Маскерони мелькнет за кадром в главе 5.

29

На математическом факультете того английского университета, где я учился, всем студентам старших курсов следовало пройти начальный курс немецкого. Тех, кто, как я, изучал немецкий в школе, отсылали в соседнюю Школу славянских и восточноевропейских исследований, чтобы учить русский, который наши наставники считали наиболее важным для математиков языком после немецкого. Вот вам наследие Петра.

30

Строго говоря, Эрнст Иоганн Бирон (латыш. Ernests Johans Birens, нем. Ernst Johann von Bühren, 1690–1772) был не немцем, а курляндцем, т.е. выходцем с территории современной Латвии; но его родным языком действительно был немецкий. (Примеч. перев.)

31

Я взял эту историю из захватывающего рассказа об отношениях Фридриха с Вольтером написанного в 1915 г. английским остроумцем и сатириком Литтоном Стрэчи вошедшего в его сборник «Книги и характеры: французы и англичане».

32

Латынь Эйлера представляет собой упрощенный, освобожденный от всего лишнего вариант этого языка, приспособленный не для похвальбы тем, как пишущий овладел стилем времен Августа (что Эйлер, наверное, мог бы при желании сделать — он знал «Энеиду» наизусть), но для максимально ясной, с минимумом словесных украшений, передачи идей тем читателям, кто более заинтересован в содержании, нежели обращает внимание на форму. Нам представится пример его латыни в главе 7.v.

33

Швейцарский математик Сэмюэль Кениг обвинил (и, возможно, справедливо) президента Берлинской академии наук Пьера Мопертюи в плагиате работы Лейбница. Мопертюи созвал заседание академии с целью объявить Кенига лжецом, что собравшиеся и исполнили. Стрэчи пишет по этому поводу: «Члены академии были напуганы, ведь их пенсии зависели от благорасположения президента. И даже знаменитый Эйлер не постеснялся принять участие в этом абсурдном и постыдном осуждении».

34

Первое английское издание вышло в 1795 г., первое американское — в 1883-м. По каким-то причинам сейчас эту книгу можно найти только в дорогих изданиях для коллекционеров. (См.: Эйлер Л. Письма к немецкой принцессе о разных физических и философских историях. СПб.: Наука, 2002. — Примеч. перев.)

35

Сформулирована Пьетро Менголи в 1644 г. Менголи в то время был профессором в университете Болоньи, так что правильнее было бы говорить «болонская задача». Но именно Якоб Бернулли впервые предложил эту задачу вниманию широкой общественности, и название «базельская задача» закрепилось.

36

>18√7776 = 1,64495160…. (Примеч. перев.)

37

log>e x = ln x. (Примеч. перев.)

38

Если форма кривой кажется странно знакомой, то это потому, что сложение друг с другом N членов гармонического ряда (глава 1.iii) дает число, близкое к ln N. В действительности:

1 + >1/>2 + >1/>3 + >1/>4 + >1/>5 + >1/>6 + >1/>7 + … + >1/>N~ ln N,

и профиль той едва держащейся колоды карт, если его повернуть на 90 градусов и отразить в зеркале, и есть график функции ln x.

39

Замечание: математики по соглашению используют букву ε (это эпсилон, пятая буква греческого алфавита) для обозначения «некоторого очень маленького числа».

40

Доказательство принадлежит греко-французскому математику Роже Апери, которому в тот момент исполнился 61 год — это по поводу мнения, что математики никогда ничего не создают после тридцатилетнего возраста. В честь этого достижения сумма — которая в действительности равна 1,2020569031595942854… — стала известна как «число Апери». Оно имеет некоторые приложения в теории чисел. Случайным образом выберем три положительных целых числа. Какова вероятность, что у них нет общего делителя? Ответ: около 83 процентов, точнее, 0,83190737258070746868… — число, обратное числу Апери.

41

Очевидно, кроме первого. Читатель, вознамерившийся тем или иным способом проверять утверждения автора, должен делать скидку на подобные, как часто горят математики, «вольности речи». В серьезных математических статьях их, как правило, не меньше, чем в данной книге. (Примеч. перев.)

42

Речь идет о «шестидесятилетнем цикле» — системе, основанной на комбинации десятеричного и двенадцатеричного циклов. Десятеричный цикл называется «Небесные стволы», а двенадцатеричный — «Земные ветви». Система также известна как «гань чжи» — букв. «стволы и ветви». (Примеч. перев.)

43

Что-то вроде «Сколько подарка ты получил?». Невозможность адекватного перевода попытаемся компенсировать следующей историей: когда сыну переводчика этой книги тоже было около 6 лет, он часто спрашивал «Сколько много?» вместо простого «сколько», а как-то раз, выучив в походе, что палатки бывают одноместные, двухместные и т.д., спросил: «Эта палатка какая местная?» (Примеч. перев.)

44

И шесть ртов людей. Определенная логика состоит в том, что, например, для плоских предметов (дверь, стол, лист бумаги…) используется одно счетное слово, а для длинных предметов (река, улица, веревка, рыба, ноги…) — другое (с исходным значением «лента»). (Примеч. перев.)

45

Обсуждающееся употребление во множественном или единственном числе можно сравнить (правда, поверхностно, а не по сути) с высказываниями типа «К нам поступила одна информация, потом еще две информации». (Примеч. перев.)

46

Характерно, что Вильям Ф. Бакли (1925-2008) был виднейшим публицистом, всю жизнь отстаивавшим консервативные политические ценности. Сейчас русскому читателю гораздо больше знаком его сын Кристофер Бакли, автор сатирических романов «Здесь курят» и «День бумеранга». (Примеч. перев.)

47

Русский язык, на котором образованные люди говорили в начале XX века, отчетливо демонстрировал тот же эффект в сочетании «третьего дня» (которое к настоящему моменту практически полностью вытеснилось некогда простонародным «позавчера»). (Примеч. перев.)

48

Английское издание: Uncle Petros and Goldbach's Conjecture. Bloomsbury USA, 2000. Роман впервые вышел на греческом в 1992 г. Как отмечает Доксиадис, в ясных математических терминах эту гипотезу впервые сформулировал Эйлер. (Роман переведен на все основные языки мира и имел успех более чем в 20 странах. Русский перевод: Доксиадис А. Дядя Петрос и проблема Гольдбаха, М.: ACT, 2002. — Примеч. перев.)

49

Относительно вещей типа гипотезы Гольдбаха и Последней теоремы Ферма вы могли бы сказать: «Но это же не арифметика, а теория чисел». Эти два понятия состояли друг с другом в интересных отношениях. Выражение «теория чисел» восходит по крайней мере к Паскалю (1654, в письме к Ферма), но до XIX столетия оно четко не отделялось от арифметики. Великий классический труд Гаусса по теории чисел назывался Disquisitiones Arithmeticae («Арифметические исследования», лат.) (1801). По-видимому, в некоторый момент ближе к концу XIX века термин «арифметика» окончательно закрепился за основными действиями, изучаемыми в начальной школе, тогда как термин «теория чисел» стали использовать в отношении более глубоких изысканий профессиональных математиков. Затем, примерно в середине XX века, произошел поворот в обратном направлении. Быть может, все началось с вышедшей в 1952 г. книги Хэролда Девенпорта «Высшая арифметика», представлявшей собой блестящее популярное изложение серьезной теории чисел; ее заглавие, как эхо, стало время от времени употребляться в качестве синонима для «теории чисел», восходящей по крайней мере к 40-м гг. XIX века. А далее, в некоторый момент в 70-х гг. (тут я исхожу уже из собственных впечатлений), среди специалистов по теории чисел стало считаться особым шиком называть свою сферу деятельности просто «арифметикой». Книга Жана-Пьера Серра «Курс арифметики» (1973) представляет собой курс по теории чисел для старшекурсников и аспирантов, охватывающий такие предметы, как модулярные формы, p-адические поля, операторы Гекке, и (да!) дзета-функцию. Не могу сдержать улыбки, представляя себе сверхзаботливую мамашу, которая выбирает на полке эту книгу для своего третьеклашки, чтобы помочь ему освоить умножение столбиком.

50

Джордж Херберт Ли Мэлори — участник первых трех британских экспедиций к Эвересту. В июне 1924 г., при попытке осуществить первое в истории восхождение на Эверест, пропал вместе с напарником в верхней части северо-восточного гребня в ходе финальной стадии восхождения (или, возможно, уже на спуске). Тело Мэлори было обнаружено в 1999 г. Достигли они вершины или нет, остается загадкой. (Примеч. перев.)

51

Ларри (Louis Feinberg), Керли (Jerome Lester Horwitz), Moy (Harry Moses Horwitz) — американские комедийные актеры первой половины XX века, более всего известные благодаря многочисленным короткометражным фильмам-сценкам с их участием. (Примеч. перев.)

52

Как произносить фамилию Dirichlet — вопрос непростой. Поскольку он был немцем, произносить следовало бы как Дирихлет. Англоговорящие так никогда не делают. Они используют или французское произношение Диришле, или нечто среднее — Дирихле. (Это последнее — стандартное русское произношение. — Примеч. перев.)

53

Константин Каратеодори, хотя и грек по происхождению, родился, получил образование и умер в Германии. Кантор родился в России — у него была русская мать, — но переехал в Германию в возрасте 11 лет и прожил там практически всю свою жизнь. Миттаг-Лефлер был шведом. Согласно математическому фольклору, именно он виноват в отсутствии Нобелевской премии по математике. Рассказывают, что у него был роман с женой Нобеля, а Нобель об этом узнал. История неплохая; правда, Нобель не был женат.

54

Кузина Феликса — Оттилия — вышла замуж за великого немецкого математика Эдуарда Куммера. Их внук Рональд Персиваль Спрейг был соавтором «теории Спрейга-Гранди» в развитой в XX веке теории игр… Мне следует побороть искушение развивать эту тему дальше — это все равно что прослеживать генеалогические линии всяких немецких князей. Другая связь с Мендельсоном возникнет в главе 20.v.

55

Математика допускает бесконечные произведения точно так же, как она допускает бесконечные суммы. Как и бесконечные суммы, некоторые из бесконечных произведений сходятся к определенному значению, а некоторые расходятся к бесконечности. Данное произведение сходится, когда s больше 1. Например, при s = 3 оно равно

>8/>7×>27/>26×>125/>124×>343/>342×>1331/>1330×>2197/>2196×>4913/>4912×>6859/>6858×….

Сомножители становятся все ближе и ближе к 1, причем делают это очень быстро, так что каждое следующее умножение — это умножение на нечто, лишь на самую малую малость отличающееся от 1, что, конечно, меняет результат очень незначительно. Прибавим к чему-нибудь нуль: никакого эффекта. Умножим что-нибудь на единицу: никакого эффекта. В бесконечной сумме члены должны достаточно быстро приближаться к нулю, чтобы прибавление их сказывалось мало; в бесконечном произведении они должны достаточно быстро приближаться к 1, чтобы умножение них сказывалось мало.

56

Все-таки кроме s = 0. (Примеч. перев.)

57

Золотой Ключ — это исключительно моя номенклатура. «Эйлерова формула произведения» — стандартное название. Стандартные же названия для двух ее частей — «ряд Дирихле» для бесконечной суммы и «эйлерово произведение» для бесконечного произведения. Строго говоря, левая часть — это некоторый ряд Дирихле, а правая часть — некоторое эйлерово произведение. Но в узком контексте данной книги дополнительные уточнения не требуются.

58

Надо полагать, что автор сознательно (и, скорее всего, после некоторых размышлений) остановился перед формулировкой так называемого правила Лейбница для производной произведения. Последуем его примеру и не будем приводить это замечательное правило, обладающее глубоким математическим смыслом, выходящим за рамки собственно математического анализа. (Примеч. перев.)

59

Есть два способа определения Li(x) — к сожалению, оба достаточно распространенные. В данной книге я использую «американское» определение, которое приводят Абрамовиц и Стеган в своем классическом «Справочнике по специальным функциям», опубликованном в 1964 г. Национальным бюро стандартов. В этом определении интеграл берется от 0 до x; в этом же смысле использовал Li(x) и Риман. Но многие математики — среди них великий Ландау (см. главу 14.iv) — предпочитают «европейское» определение, в котором интеграл берется от 2 до x, чтобы избежать неприятностей при x = 1. Два приведенных определения различаются на 1,04516378011749278…. В компьютерной программе Mathematica реализовано американское определение.

60

Неплохое приближение к Li(N) можно получить, складывая 1/ln 2, 1/ln 3, 1/ln 4, …, 1/ln N. Если, например, взять такую сумму для N, равного миллиону, то результат будет равен 78 627,2697299…, тогда как значение интегрального логарифма есть 78 627,5491594…. Так что сумма дает приближение, которое недобирает лишь 0,0004 процента. Этот интеграл вполне оправдывает свое обозначение в виде вытянутой буквы S, указывающей на «сумму».

61

Большая ее часть. Пруссия и Австрия также удерживали исторически польские земли.

62

Речь идет о первом из законодательных актов, сформировавших современную избирательную систему Великобритании. (Примеч. перев.)

63

Алексис де Токвиль (Alexis Charles Henri Clérel de Tocqueville, 1805-1859) — французский историк, социолог и политический деятель, лидер консервативной Партии порядка, министр иностранных дел Франции (1849). Книга, о которой идет речь, произвела сильное впечатление на Пушкина, который писал о ней: «Уважение к сему новому народу и к его уложению, плоду новейшего просвещения, сильно поколебалось. С изумлением увидели демократию в ее отвратительном цинизме, в ее жестоких предрассудках, в ее нестерпимом тиранстве». (Примеч. перев.)

64

Он проработал полтора года в качестве ассистента в физической лаборатории Beбера, за что могли платить кое-какое скромное жалованье, так что, возможно, все же не был совершенно лишен средств.

65

Топология представляет собой «геометрию резинового листа» — изучение тех свойств фигур, которые остаются неизменными при растяжениях, но без разрезов и склеек. Поверхность сферы топологически эквивалентна поверхности куба, но не поверхности бублика или кренделя. Слово «топология» было введено в обиход Йоханом Листингом в 1836 г. в письме к своему старому школьному учителю. В 1847 г. Листинг написал небольшую книгу, озаглавленную «Предварительные наброски по топологии». Он был профессором математической физики в Геттингене в то же время, когда там находился Риман, и Риман, без сомнения, знал и его самого, и его работы. Однако Риман, по-видимому, никогда не использовал слово «топология», всегда употребляя для этой цели латинский термин, который предпочитал Гаусс, analysis situs («анализ положения»).

66

Московский университет, как мы помним, был основан Ломоносовым и Шуваловым еще в 1755 г. (Примеч. перев.)

67

Кроме того, он явился персонажем шуточной песни «Лобачевский», написанной в 1959 г. математиком и музыкантом Томом Лерером. (Нельзя сказать, чтобы содержание этой достаточно известной песни популярного исполнителя добавляло математической славы ее герою. Впрочем, Николай Иванович в этом и не нуждается. — Примеч. перев.)

68

Русским исследователям по понятным причинам не приходится сталкиваться с этой проблемой, но зато многие (если не все) русскоязычные математики произносят эту фамилию не «Чéбышев», а «Чебышóв». (Примеч. перев.)

69

В 1849 г. Чебышев написал работу «Теория сравнения», которая была его диссертацией. Работы о простых числах — «Об определении числа простых чисел, не превосходящих данной величины» (1851; первый доклад на эту тему был сделан Чебышевым в 1848) и «О простых числах» (1852). Помимо математических исследований Чебышев занимался конструированием механизмов, среди которых — «стопоходящая машина», имитирующая движение животного при ходьбе. На постановку математической задачи о наилучшем приближении функций его натолкнуло изучение параллелограмма Уатта. Он был избран членом Санкт-Петербургской, Берлинской, Полонской и Шведской академий наук, членом-корреспондентом Парижской академии наук, а также членом Лондонского королевского общества. (Примеч. перев.)

70

Атле Сельберг, великий гуру теории чисел нашего времени, на момент написания этих строк (июнь 2002) все еще работает в институте и не прекращает занятий математикой. Связанная с ним история будет рассказана в главе 22. Он родился в Лангесунде, Норвегия, 14 июня 1917 г. (Атле Сельберг умер 6 августа 2007 г. — Примеч. перев.)

71

Риман, Гаусс, Дирихле и Эйлер все удостоены этого отличия. Кратер Римана расположен на 87°E 39°N.

72

Возможно, следует объяснить, что у математиков особый подход к изучению иностранных языков. Для чтения математических текстов не на своем родном языке глубокое знание этого языка вовсе не требуется. Достаточно выучить несколько десятков распространенных слов и конструкций, используемых при изложении математической канвы: «отсюда следует, что…», «достаточно показать, что…», «без потери общности…» и т.д. Остальное составляют обозначения, такие как √ и ∑, единые во всех языках (хотя и с незначительными «диалектными» отклонениями в зависимости от традиций, принятых в данной стране). Разумеется, некоторые математики — превосходные лингвисты. Андре Вейль (см. главу 17.iii) говорил и читал по-английски, по-немецки, по-португальски, по-гречески, на латыни и на санскрите, помимо своего родного французского. Но я имею в виду обычных математиков.

73

Двое из шести детей Гаусса эмигрировали в Соединенные Штаты, где приняли участие в заселении штата Миссури.

74

Горы Гарц (Харц) — самые высокие горы Северной Германии, располагаются на территории земель Нижняя Саксония, Саксония-Анхальт и Тюрингия. Наивысшая точка — Брокен, 1142 м. — считается самым известным местом встреч ведьм в Европе. Эта гора описана также в «Фаусте» Гете. (Примеч. перев.)

75

«Неслабая формула» на самом деле не столь уж и страшна. Если, конечно, вы не забыли математику из старших классов. За исключением дзета-функции, там нет ничего такого, чего бы не проходили, по крайней мере частично, в школе. Синус и факториал — это, как говорят математики, «элементарные» функции, так что выписанная формула «элементарно» связывает значение дзета-функции при аргументе 1 − s со значением при аргументе s. Такая формула, кстати сказать, называется «функциональным уравнением».

76

К слову, этот факт был впервые доказан Бернхардом Риманом.

77

Чтобы суммировать ряд к другому значению, необходимо переставить бесконечное число слагаемых; в отношении конечных сумм, разумеется, верен закон перестановочности для сложения. (Примеч. перев.)

78

Эдвардс Х.М. Дзета-функция Римана. 1974. Перепечатано изд-вом Dover в 2001 г.

79

Несмотря на некоторое число печальных примеров, — как, скажем, Риман — математики высокого уровня демонстрируют потрясающее здоровье. При написании этой книги меня поразило число математиков, доживших до значительного возрасту и продолжавших активно трудиться практически до конца своих дней. «Математика — очень тяжелая работа, и ее корифеи имеют тенденцию быть выше среднего в том, что касается энергии и здоровья. Ниже определенного предела человек сдает, но выше этого предела напряженная умственная работа способствует сохранению энергии и здоровья (а также — как можно судить из многочисленных исторических свидетельств на протяжении многих лет — способствует долголетию)» (Литлвуд Дж. И. Искусство работы математика. 1967). Литлвуд, о котором еще много будет сказано в главе 14, стал иллюстрацией своего собственного тезиса, дожив до 92 лет. В 1972 г. его коллега X.А. Холлонд сделал о нем следующую запись: «Ему идет 87-й год, а он продолжает работать по нескольку часов подряд, занимаясь написанием статей для публикации и помогая математикам, которые прислали ему свои задачи». (Цит. по Беркил Дж. Ч. в кн.: Математика: Люди, проблемы, результаты. Brigham Young University. 1984.)

80

О распределении нулей функции ζ(s) и их арифметических следствиях. (Примеч. перев.)

81

Имеется в виду роман-притча Г. Мелвилла «Моби Дик, или Белый Кит» (1851). (Примеч. перев.)

82

«Прекрасная эпоха» — название, закрепившееся за периодом 1890–1914 гг., характеризовавшимся стабильностью жизни, расцветом культуры и техники. Впрочем надо заметить, что название это появилось после Первой мировой войны и носило отчетливо ностальгический характер. (Примеч. перев.)

83

Эта музыка — наряду с музыкой Баха, Бетховена, Чайковского, Мусоргского, Понкьелли и Стравинского — была использована в классической полнометражной анимационной ленте «Фантазия» (1940). (Примеч. перев.)

84

Нет, не могу сдержаться. «Если f — аналитическая функция в кольце 0 < r>1 < |z| < r>2 < ∞, r — некоторое число строго между r>1 и r>2, а M>1, M>2 и M — максимумы функции f на трех окружностях, соответствующих r>1, r>2 и r, то выполняется неравенство:

M>ln(r2/r1) ≤ M>1>ln(r2/r)M>2>ln(r/r1)».

85

Годы жизни Стилтьеса — 1856-1894.

86

«Полученные доклады». Этот термин столь распространен в научной библиографии, что часто сокращается до C.R.

87

В 1627 г. Декарт присутствовал при осаде Ла-Рошели, а еще до этого, во время Тридцатилетней войны, служил наемником, отчасти из желания «посмотреть мир». Одной же из вероятных причин смерти Декарта в 49-летнем возрасте (в 1650 г. в Стокгольме называется необходимость раннего подъема по утрам для занятий со шведкой королевой Кристиной. (Примеч. перев.)

88

Он не вступил в коммунистическую партию, но его дочь Жаклин вступила.

89

Русский перевод этой книги вышел в Москве в 1970 г. в издательстве «Советское радио». (Примеч. перев.)

90

Хотя слава доказательства ТРПЧ принадлежит в равной мере Адамару и де ля Валле Пуссену, я написал массу всего о первом и почти ничего о втором. Отчасти это вызвано тем, что я нахожу Адамара интересным и симпатичным человеком. Отчасти же тем, что о де ля Валле Пуссене имеется гораздо меньше материалов. Будучи прекрасным математиком, он, по-видимому, не проявлял себя ни в каких других сферах. Я спросил об этом у Атле Сельберга, единственного из тех математиков, с кем я разговаривал, который мог знать обоих. Адамар? «А, да. Я встречал его на Кембриджском конгрессе» (т.е. в 1950 г). Де ля Валле Пуссен? «Нет. Я никогда его не встречал, и не знаю никого, кто бы встречал. Не думаю, что он много путешествовал».

91

В 2006 г. конгресс прошел в Мадриде (собрав более 4500 участников), а конгресс 2010 г. планируется провести в Хайдерабаде (Индия). (Примеч. перев.)

92

Буквально — «девять зулусских цариц правили Китаем», фраза в русском переводе столь же бессмысленная, как и в оригинале, но, кроме того, еще и бесполезная. Вообще-то одной этой фразой дело в любом случае не ограничивается: в математике встречаются еще и ажурные буквы H и O. В рамках аналогии, приводимой автором в следующем абзаце, это, если угодно, огромные и толстые матрешки, которые по некоторым признакам уже не совсем матрешки. (Примеч. перев.)

93

В наше время фазу чаще называют «аргументом» и обозначают Arg(z). Я использовал старое название (в оригинале «amplitude» и Am(z) — пер.), отчасти из уважения к Г.Х. Харди (см. главу 14.ii), а отчасти чтобы избежать путаницы со словом «аргумент» для обозначения «числа, к которому применяется функция». (В переводе, следуя желанию автора избежать подобной путаницы, использован термин «фаза», который несет в себе некоторые «физические» коннотации, но в целом достаточно ясно указывает на то, что он призван обозначать. — Примеч. перев.)

94

Гильберт родился в 1862 г. в Велау, ныне поселок Знаменск Калининградской области. (Примеч. перев.)

95

Успех, приносящий уважение; скандальный успех (франц). (Примеч. перев.)

96

В мои намерения вовсе не входит выставлять Кронеккера никчемным чудаком. Тезис, который он защищал, хоть я и не согласен с ним, представляет собой весьма тонкий и глубокий математический вопрос. По поводу вдохновенной защиты Кронеккера см. статью Хэролда Эдвардса в: Mathematica Intelligencer. Vol. 9. № 1. Кронеккер, по словам профессора Эдвардса, был человек «вполне разумный и рассудительный, но едкий».

97

Сэмюэл Джонсон (доктор Джонсон, или просто Хан) — английский литератор и филолог XVIII в., прославившийся работоспособностью, широтой интересов и любовью к лондонским кофейням, заменявшим ему рабочий кабинет. (Примеч. перев.)

98

См. однако, высказывание, приписываемое Ландау в главе 14.iv. (Примеч. перев.)

99

Рид К. Гильберт. С приложением обзора Германа Вейля математических трудов Гильберта. М.: Наука, 1977. (Примеч. перев.)

100

Геттисбергская речь Авраама Линкольна 19 ноября 1863 г. на месте одного из сражений войны между Севером и Югом — одна из вершин политического красноречия. Эта короткая (из десяти предложений) речь оказала огромное воздействие на американцев и считается одной из наиболее известных и часто цитируемых речей на английском языке. (Примеч. перев.)


101

На самом деле Гильберт представил аудитории 10 из этих проблем, поскольку те, кто заранее прочел печатный вариант его доклада, посоветовали ему сократить устный вариант. Все 23 проблемы перечислены в печатном варианте, и на них обычно ссылаются именно по номеру в этой работе. Те проблемы, которые он в действительности огласил собравшейся в Сорбонне аудитории, имеют номера 1, 2, 3, 7, 8, 13, 16, 19, 21 и 22. Дополнительная путаница возникает из-за того, что некоторые из 23 пунктов, которые выделил Гильберт, всего лишь очерчивают области исследований и небезоговорочно являются проблемами. Характерен пункт 2: «Исследовать согласованность аксиом арифметики». Этим могут объясняться различные схемы нумерации проблем Гильберта, которые может встретить читатель. Например, Эндрю Ходжес в своей биографии Алана Тьюринга насчитывает 17 проблем Гильберта, а не 23, причем доказательство Гипотезы Римана приводится под номером 4, а не 8. Те из выделенных Гильбертом пунктов, которые составляют четко определенные проблемы, в настоящее время все решены, за единственным исключением Гипотезы Римана.

102

Лучший из таких известных мне рассказов длиною в книгу — это The Hilbert Challenge Джереми Дж. Грея.

103

Хорошее популярное изложение можно найти в книге Джона Л. Касти Mathematical Mountaintops. Oxford University Press (2001).

104

Перевод с немецкого М.Г. Шестопал и А.В. Дорофеевой по изданию: Проблемы Гильберта: Сб. под общ. ред. П.С. Александрова. М.: Наука, 1969. (Примеч. перев.)

105

Большинство математиков того времени присвоили бы этот титул Анри Пуанкаре (1854-1912). Венгерская академия наук так и поступила, наградив Пуанкаре своей первой премией Бойаи как «математика, достижения которого за последние 25 лет внесли наибольший вклад в прогресс математики». Вторая премия Бойаи была присуждена в 1910 г. Гильберту.

106

Джордж Пойа: 1887-1985. Вглядитесь в эти даты — еще один «бессмертный». Пойа был венгром. Еще более удивительным, чем подъем немецкой математики в начале XIX столетия, был подъем венгерской в начале XX. Тогда как немецкие государства (не считая Австрии и Швейцарии) в 1800 г. насчитывали около 24 миллионов жителей, говорящее по-венгерски население Венгрии составляло в 1900 г. около 8,7 миллиона и, как мне кажется, так и не перешло через 10-миллионный рубеж. К этой небольшой и неприметной нации относится потрясающая доля первоклассных математиков мирового уровня: Боллобаш, два Кенигса, Керекярто, Кюрчхак, Лакатош, Радо, Реньи, два Риса, Сас, Сеге, Секефальви-Надь, Туран, Фейер, Хаар, Эрдейи, Эрдеш, фон Нейман — и, наверное, еще нескольких я забыл. На объяснение этого феномена были направлены кое-какие литературные попытки. Сам Пойа считал, что ключевым фактором являлся Фейер (1880–1959), вдохновенный наставник и способный администратор, который привлекал и поощрял математические таланты. Значительная часть великих венгерских математиков (включая Фейера) были евреями — или же, как в случае родителей Пойа, «социально» обращенными в христианство, но исходно еврейского происхождения. (В отечественной литературе более известен венгерский вариант написания имени математика: Дьердь Пойа. — Примеч. перев.)

107

А именно — «четырехмерное спиновое риманово многообразие». (Примеч. перев.)

108

«Для правильного политопа все фигуры примыкания к вершине эквивалентны». Политоп — это n-мерный эквивалент двумерного многоугольника или трехмерного многогранника. Он называется правильным, если все его «клетки» — (n−1)-мерные «грани» — правильные и все его фигуры примыкания к вершине также правильные. Гранями куба являются квадраты, а фигурами примыкания к вершине — равносторонние треугольники. К вопросу о долголетии: «Доналд» Кокстер родился 9 февраля 1907 г. В конце 2002 г. он все еще числился в списке сотрудников университета в Торонто. В 2001 г. он опубликовал статью (совместно с Бранко Грюнбаумом). Про знаменитого своей научной плодовитостью Кокстера один математик в разговоре со мной заметил следующее: «Что-то Доналд в последнее время немного притормозил». (Гарольд Скотт Макдоналд («Доналд») Кокстер умер 31 мая 2003 г. — Примеч. перев.)

109

Положительных целочисленных. (Примеч. перев.)

110

Теория уверяет нас между прочим, что вещественная часть со всей математической точностью равна >1/>2, а не 0,4999999 или 0,5000001. Мы вернемся к этому в главе 16.

111

Пользуясь случаем, заметим, что «неизвестное» комплексное число чаще всего обозначается буквой z, а не x. Математики, как правило, используют n и m для целых чисел, x и y для вещественных, a z и w для комплексных. Разумеется, можно использовать любые другие буквы, какие нам захочется, — это все не более чем традиция. (Для аргумента дзета-функции я твердо следую другой традиции: он обозначается буквой s, и так делают все математики.) Пойа говаривал своим ученикам, что общепринятое обозначение z для аргумента и w для значения в теории функций комплексной переменной происходят от немецкого Zahl, что означает «число», и Wert — «значение». Я, правда, не знаю, так ли это на самом деле.

112

Эстерман (1902-1991) оставил свой след в математике, доказав в 1929 г., что гипотеза Гольдбаха, согласно которой любое четное число большее 2 можно представить в виде суммы двух простых чисел, верна почти всегда. Он также был творцов доказательства иррациональности числа √2, приведенного в примечании [18] в главе 3, — «первого нового доказательства после Пифагора», как он любил похвастаться.

113

Кроме нулевого. (Примеч. перев.)

114

С этого момента, конечно, в окошке «функция» выставлено ζ(z). (Примеч. перев.)

115

Математики, работающие с функциями комплексной переменной, обычно говорят «плоскость z» и «плоскость w», подразумевая при этом, что в теории функций комплексной переменной z — общее обозначение для аргумента, a w — общее обозначение для значения функции.

116

Иллюстрации и того, и другого типа заняли свое настоящее место лишь с появлением мощных компьютерных рабочих станций и быстродействующих персональных компьютеров. До того построение картинок, подобных изображенным на рисунках с 13.6 до 13.8, было исключительно нелегким делом.

117

Э.В. Барнс — в то время заместитель декана Тринити-колледжа по учебной работе. Позднее он стал англиканским епископом.

118

Автор Calcul des Résidus (фр. «Исчисление вычетов») — учебника по теории функций комплексной переменной — Эрнст Линделёф (1870–1946) был главным героем скандинавской математики, развитию которой он уделял много сил, занимаясь преподаванием, научной работой и написанием учебников. Он родился в Хельсинки и в начале своей жизни был подданным русского царя — Финляндия получила независимость от России лишь в 1917 г. Линделёф, однако, был финским патриотом (один из двух финнов в этой книге) и с энтузиазмом принял участие в жизни нового государства. Он высказал гипотезу («гипотезу Линделёфа») — знаменитое предположение о дзета-функции Римана, относящееся к скорости ее роста в критической полосе. Оно описано в приложении.

119

Литлвуд Дж. Математическая смесь. М.: Физматгиз. 1962. Имеются и последующие издания, например: М.: Наука. 1978. (Примеч. перев.)

120

В Тринити это означало должность лектора, что предполагало регулярную стипендию и право занимать квартиру в колледже и ужинать в «зале» (столовой). Это не обязательно включало в себя перспективу получения там постоянной работы. (Речь идет о том, что репутация кембриджского Тринити-колледжа столь высока, что его администрация могла позволить себе не давать обещания постоянной работы при приеме на должности, которые во многих других местах предполагали со стороны университета подобные обязательства. — Примеч. перев.)

121

В середине 1930-х гг. советская разведка завербовала пятерых студентов старших курсов из Кембриджа; это были Гай Берджесс, Доналд Маклин, Ким Филби, Энтони Блант и Джон Кернкросс. Все члены этой «кембриджской пятерки», как их называли в Советском Союзе, со временем заняли высокое положение в британских политических и разведывательных учреждениях в 1940-х и 1950-х гг. и передавали жизненно важные сведения в СССР в течение Второй мировой войны и холодной войны. Четверо из пяти были из Тринити-колледжа, а пятый — Маклин — из Тринити-холл (отдельного и меньшего колледжа).

122

Литтон Стрэчи, Леонард Вулф, Клайв Белл, Десмонд Маккарти, Сэксон Сидни-Тернер и оба брата Стивен (Тоби и Эдриен) — все были из Тринити. Но Джон Мейнард Кейнс, Роджер Фрай и Э.М. Форстер — из Кингс-колледжа. (Созданная в 1906 г. группа «Блумсбери» объединила молодых людей, интересы которых были связаны с искусством. Центром группы была семья Стивен, где кроме Тоби и Эдриена были и две сестры, Ванесса и Вирджиния. Ванесса вскоре вышла замуж за художника Клайва Белла, а Вирджиния (Вирджиния Вулф, 1882-1941) вышла в 1912 г. за известного журналиста Леонарда Вулфа. В 1910 г. в среде блумсберийцев появился Р. Фрай, игравший важную роль в культурной жизни Англии тех лет. — Примеч. перев.)

123

«Курс анализа» (фр.) (Примеч. перев.)

124

Имеется в виду известный всякому английскому школьнику восторженный сонет поэта-романтика Джона Китса (1795-1821), написанный сразу по прочтении «Одиссеи» в далеком от оригинала, но весьма экспрессивном «ренессансном» переводе Джорджа Чапмена (1559?>_1634). Сонет заканчивается строками в переводе С. Сухарева:

Вот так Кортес, догадкой потрясен,
Вперял в безмерность океана взор,
Когда, преодолев Дарьенский склон,
Необозримый встретил он простор.

(Примеч. перев.)

125

Дон — преподаватель, член совета колледжа в Кембридже и Оксфорде. (Примеч. перев.)

126

Сриниваса Рамануджан (1887-1920) — индийский математический гений-самоучка. Он написал письма трем кембриджским математикам с просьбой высказать мнение о его результатах; вник и откликнулся один лишь Харди. Среди многого другого на Харди произвела впечатление следующая найденная Рамануджаном сумма ряда:

1 − 5(>1/>2)>3 + 9(>1×3/>2×4)>3 − 13(>1×3×5/>2×4×6)>3 + … = 2/π.

(Примеч. перев.)

127

«Овал» — легендарное поле для игры в крикет в лондонском Кеннингтоне. Игрок выбит, если мяч попал в калитку, когда хотя бы один из бегущих игроков находился между калитками (игрок тогда считается «bowled out») или если игрок подающей команды поймал мяч после того, как игрок бьющей команды коснулся мяча битой, но до удара мяча о землю (игрок считается «cought out»). Иннинг заканчивается, когда выбиты 10 игроков бьющей команды. (Цифра в 211 пробежек колоссально велика при любой схеме подсчета числа пробежек без выбывания). Тест-матч играется по правилам, делающим встречу самым долгим соревнованием в крикете. На два иннинга обычно отводится 5 дней. (Примеч. перев.)

128

Так всегда говорится. Правда, Александерсон в книге о Джордже Пойа утверждает, что дома у Пойа их много больше.

129

Хотя на корешке моего экземпляра (первого издания) написано просто Primzahlen.

130

«О нулях функции Римана ζ(s)». Упоминаемая чуть ниже статья Литлвуда: «О распределении простых чисел». (Примеч. перев.)

131

Разумеется, предпочтительнее знать точный ответ; но речь идет о том, что часто удается доказать лишь менее строгое ограничение. (Примеч. перев.)

132

В задачах такого типа имеются еще и нижние границы. Нижняя граница — это такое число N, для которого можно доказать, что, каков бы ни был точный ответ, он заведомо больше, чем N. В случае с литлвудовым нарушением, похоже, сделано куда меньше — можно думать, из-за того, что все знают, что точное значение числа, при котором происходит первое нарушение, необычайно велико. Делеглиз и Риват в 1996 г. установили в качестве нижней границы 10>18, а позднее довели нижнюю границу до 10>20, однако ввиду результата Бейса и Хадсона подобные нижние границы почти ничего не значат.

133

Если имена Бейса и Хадсона кажутся знакомыми, то это из-за того, что они упоминались в главе 8.iv в связи с отклонением Чебышева. На самом деле на очень глубоком уровне, определенно слишком глубоком, чтобы здесь о нем говорить, имеется родство между тенденцией функции Li(x) быть больше, чем π(x), и чебышевскими отклонениями. В теории чисел эти два вопроса обычно рассматриваются совместно. В действительности в работе Литлвуда 1914 г. показано не только, что тенденция функции Li(x) быть больше, чем π(x), нарушается бесконечно много раз, но и что тоже самое верно для чебышевских отклонений. По поводу некоторых недавних. весьма впечатляющих и глубоких результатов по этому вопросу см. статью Майкла Рубинстейна и Питера Сарнака Chebyshev's bias в журнале: Experimental Mathematics. 1994. Vol. 3. P. 173-197.

134

Читателям популярной литературы по математике фон Кох более известен благодаря «кривой Коха». В этом контексте всегда опускают «фон» — ума не приложу, почему. (Кривая Коха — фрактальная кривая, которая нигде не имеет касательной, хотя всюду непрерывна. Три копии кривой Коха, расположенные вдоль сторон правильного треугольника, образуют «снежинку Коха». — Примеч. перев.)

135

Или не зная о книге Бахманна, или же (что более вероятно) просто решив не использовать новое обозначение с Ο большим, фон Кох на самом деле выразил свои результат в более традиционном виде:

|f(x) − Li(x)| < K∙√x∙ln x.

136

В этой области ведется немало исследований. Весьма вероятно, что на самом деле π(x) = Li(x) + Ο(√x), что, возможно, и имел в виду Риман в своем замечании насчет «порядка величины». Однако мы ни в какой мере не близки к доказательству этого факта. Некоторые исследователи, между прочим, предпочитают обозначение Ο(x>1/2+ε), чтобы подчеркнуть, что постоянная, подразумеваемая в определении О большого, зависит от ε. Если использовать это обозначение, то логика раздела 15.iii слегка изменяется. Заметим, что квадратный корень из N примерно в два раза короче (я имею в виду, что он содержит примерно в два раза меньше цифр), чем N. Отсюда следует (хотя я и не буду останавливаться ради подробного доказательства), что Li>−1(N) дает для N-го простого числа правильный результат примерно до половины длины (примерно первая половина цифр оказывается правильной). Выражение Li>−1(N) здесь надо понимать в смысле обратной функции, как в главе 13.ix, следующим образом: «число К, для которого Li(K) = N». Миллиардное простое, например, есть 22 801 763 489, a Li>−1(1 000 000 000) равно 22 801 627 415, где мы видим пять, почти шесть правильных цифр из одиннадцати.

137

Мебиуса более всего помнят за ленту (лист) Мебиуса, показанную на рисунке 15.4, которую сам он придумал в 1858 г. (Ранее она была описана другим математиком, Йоханом Листингом, также в 1858 г. Листинг опубликовал свое открытие, а Мебиус — нет, так что, согласно академическим правилам, ее следовало бы называть «лентой Листинга». Мир устроен несправедливо.) Чтобы сделать ленту Мебиуса, надо взять полоску бумаги за концы (один конец в правой руке, другой — в левой), перекрутить один из них на 180 градусов и склеить их друг с другом. Получится односторонняя поверхность — муравей может переползти из любой точки на полосе в любую другую точку, не перелезая при этом через край.

138

Если вам кажется, что выбор буквы, указывающей на свое собственное имя, было проявлением тщеславия со стороны Мебиуса, то сообщу вам, что сам Мебиус при первом описании своей функции в 1832 г. не использовал буквы μ; виновник появления μ — Франц Мертенс, который ввел ее в 1874 г., причем в честь Мебиуса, к тому времени уже скончавшегося, а не в свою.

139

Если подразумеваемая здесь логика от вас ускользает, давайте рассмотрим аналогию. Представим себе, что теорема 15.1 утверждает: «Все люди имеют рост менее 10 футов», а Гипотеза Римана утверждает, что «все граждане США имеют рост менее 10 футов». Если первое утверждение верно, то должно быть верно и второе, поскольку каждый гражданин США — человек. Более слабый результат следует из более сильного. Если человека ростом в 11 футов обнаружат в дебрях Новой Гвинеи, то его существование продемонстрирует ложность теоремы 15.1. Однако Гипотеза Римана будет по-прежнему оставаться открытой, поскольку найденный гигант не является гражданином США. (Хотя, как я подозреваю, довольно быстро им станет.)

140

Утверждение тем более примечательное, что Дюбуа-Реймон (не столько француз, сколько немец швейцарского происхождения) был также признанным физиологом, установившим ряд закономерностей, характеризующих электрические явления в мышцах и нервах. (Примеч. перев.)

141

«Закон об устранении бедственного положения народа и государства», дающий Гитлеру законодательную власть (формально принят как временный до 1 апреля 1937 г.). Закон ограничивал свободу личности и свободу мнений, включая свободу печати, собраний и союзов; позволял нарушать тайну переписки, телеграфной и телефонной связи, устраивать домашние обыски, конфисковывать имущество; правительству рейха предоставлялось право пользоваться полнотой власти в землях, когда это вызывалось необходимостью. (Примеч. перев.)

142

Бернштейн стал профессором только в 1921 г. Мне приходилось читать, что он формально не подпадал под действие декрета в силу гинденбурговских поправок, но я не знаю, на основании чего делается такое утверждение. В период, пока Гитлер находился у власти, Ф. Бернштейн (1874-1956) бежал в США, но в 1948 г. вернулся в Геттинген.

143

Карл Зигель рассказал Хэролду Дэвенпорту следующую историю. В 1954 г. в связи с празднованием 1000-летия основания Геттингена отцы города решили предоставить почетное гражданство трем из изгнанных в 1933 г. профессоров. Из редакции Tageblatt к Реллиху (Франц Реллих, в то время директор математического института при университете) направили корреспондента, который спросил его, сможет ли он написать статью об этих троих. Реллих ответил: «А чего бы вам просто не посмотреть, что вы сами писали про них в 33-м?»

144

Имеется ветвь геометрической теории функций, называемая, быть может не вполне правильно, «теорией Тейхмюллера». Там рассматриваются свойства Римановых поверхностей. Тейхмюллер добровольцем пошел в действующую армию во время Второй мировой войны и пропал без вести в боях на Днепре в сентябре 1943 г.

145

В мире математики другим примером является Людвиг Бибербах, автор знаменитой гипотезы в теории функций комплексной переменной (гипотезу доказал в 1984 г. Луи де Бранж). Устные экзамены у аспирантов в Берлинском университете в 1933 г. Бибербах принимал в полном нацистском облачении.

146

Я не в состоянии придумать никакого удовлетворительного перевода слова Nachlass. Равным образом — если судить по эпизодическому появлению этого слова в написанных по-английски текстах — и никому другому это не удалось. Это «литературные останки», как сообщает мне мой немецкий словарь. В данном контексте это должно означать «неопубликованные записи, найденные среди личных вещей ученого после его смерти».

147

Из нашего обсуждения Ο большого мы помним, что оно включает в себя некоторый постоянный множитель. Так, Ο(ln T) означает, что «этот член никогда не превосходит некоторого постоянного кратного величины ln T». Характеристика формулы как «очень хорошая» означает, что этот постоянный множитель мал. В данном случае он меньше чем 0,14.

148

Соответствующая теория имеет дело с нулями, расположенными в точности (в математическом смысле) на критической прямой. Это важно для понимания логики происходящего. Теория A говорит вам: «Имеется n нулей в прямоугольнике от T>1 до T>2» (рис. 16.1). Теория B говорит: «Имеется m нулей на критической прямой от T>1 до T>2». Если окажется, что m = n, то, значит, мы проверили Гипотезу Римана между T>1 и T>2, если же m меньше, чем n, то мы опровергли Гипотезу! (Ясно, что ситуация, когда m больше n, логически невозможна.) Теория B имеет дело с тем, что происходит на критической прямой. Рассматриваемые там нули не могут иметь вещественных частей 0,4999999999 или 0,5000000001. Это замечание полезно сравнить с другим замечанием на эту тему, сделанным в главе 12.vii.

149

Похоже, кстати, что все вычисленные до сих пор нули — иррациональные числа. Потрясающим чудом было бы появление среди них целого числа или хотя бы повторов в десятичных знаках (что указывало бы на рациональное число). Причины, по которым такого не может быть, мне неизвестны, однако же этого не происходит.

150

Инициатором присуждения Филдсовской медали, впервые врученной в 1936 г., является канадский математик Джон Чарльз Филдс (1863-1932). В настоящее время она присуждается раз в четыре года и ставит своей главной целью отметить выдающихся молодых математиков. Поэтому она присуждается только тем, кому не исполнилось 40 лет. Некоторые из математиков, упомянутых в данной книге, являются лауреатами Филдсовской медали: это Сельберг (1950), Жан-Пьер Серр (1954), Пьер Делинь (1978), Ален Конн (1982). Эта медаль высоко ценится среди математиков. Если вы филдсовский медалист, то каждый математик знает об этом и упоминает ваше имя с глубоким уважением. (Филдсовским лауреатом является и упомянутый во вступлении Энрико Бомбьери (1974). Лауреатами последних лет стали: 1990 — В. Дринфельд (СССР), В.Ф.Р. Джоунс (Новая Зеландия), Ш. Мори (Япония), Э. Виттен (США); 1994 — Ж. Бурген (Бельгия), П.-Л. Лион (Франция), Ж.-К. Йоккоз (Франция), Е. Зельманов (Россия); 1998 — Р. Борхердс (Великобритания), В.Т. Говерс (Великобритания), М. Концевич (Россия), К.Т. Макмаллен (США), Э. Уайлс (Великобритания, серебряная медаль); 2002 — Л. Лаффорг (Франция), В. Воеводский (Россия); 2006 — А. Окуньков (Россия), Г. Перельман (Россия, отказался от премии), Т. Тао Австралия), В. Вернер (Франция). — Примеч. перев.)

151

Британская школа кодов и шифров — секретный шифроаналитический центр правительства Великобритании. (Примеч. перев.)

152

Не 104, как говорит Ходжес.

153

«Теория дзета-функции Римана» (1951). Ее все еще можно купить. (Титчмарш Э.Ч. Дзета-функция Римана. Пер. с англ. Москва. 1947. — Примеч. перев.)

154

Всего одно только биографическое замечание. Джозеф Бэклунд (1888-1949) — второй финн в этой книге; он родился в рабочей семье в городе Якобстад, расположенном на Ботническом заливе. «Члены семьи были одаренными, но, по-видимому, психически неуравновешенными; три брата Джозефа покончили с собой». (Элфвинг Густав. История математики в Финляндии, 1828-1918. Хельсинки. 1981). Бэклунд был учеником Линделёфа, а после аспирантуры стал актуарием и сделал карьеру в области страхования, как и Грам. Накопленные человечеством знания немало обязаны страховому бизнесу. Грам, кстати, умер нелепой смертью — его сбил велосипед.

155

В книге профессора Эдвардса приведены несколько фотографий страниц из Nachlass, по которым можно судить о масштабе работы, предпринятой Зигелем.

156

В 2004 г. Ксавье Гурдон, используя метод Одлыжко-Шонхаге, проверил, что десять триллионов нетривиальных нулей дзета-функции лежат на критической прямой. Это вычисление показывает, что Гипотеза Римана верна по крайней мере до высоты T, равной 2,4 триллиона. Читателю этой книги может быть небезынтересно, что «техническую» основу метода Гурдона составляет некоторый прием (из теории функций, а не теории чисел), называемый интерполяцией Чебышева. (Примеч. перев.)

157

Например, С. Дж. Паттерсон в своей книге «Введение в теорию дзета-функции Римана» в параграфе 5.11 пишет: «Наиболее убедительные аргументы, которые имеются к настоящему моменту в пользу справедливости Гипотезы Римана, — это справедливость аналогичного утверждения для дзета-функций, связанных с кривыми над конечными полями. Формальное сходство настолько впечатляюще, что трудно представить себе, как оно могло бы не приводить к еще более далеко идущим совпадениям» (курсив мой. — Дж. Д.).

158

Clock (англ). — часы. (Примеч. перев.)

159

Попытаюсь выразить это в афористичной форме: алгебраистов заботит не столько то, чем являются вещи, сколько то, что с ними можно делать. Они — «отглагольные», а не «отсуществительные» люди. Другой интересный концептуальный взгляд на алгебру предложил сэр Майкл Атья в своей лекции в Филдсовском институте в Торонто в июне 2000 г. Тогда как геометрия с очевидностью имеет дело с пространством (говорил сэр Майкл, лауреат Филдсовской премии), алгебраисты имеют дело с временем. «Геометрия по существу статична. Я могу просто сидеть здесь и наблюдать, при этом может ничего не меняться, но это не мешает мне наблюдать. Алгебра, однако, имеет дело с временем, потому что там имеются операции, которые надлежит выполнять последовательно.» (Шенитцер А., Атья М.Ф. Математика в двадцатом столетии. American Mathematical Monthly. Vol. 108. № 7.)

160

Здесь (как и в ряде других случаев в этой книге и повсеместно в математике в целом) название — скажем, «Гипотеза Римана» или «формула Эйлера», — стандартно используемое в некотором устоявшемся контексте, смело применяется расширительно, причем иногда в контекстах, очень далеких от исходного и таких, о существовании которых ученый, давший свое имя названию, и не подозревал. Когда при этом хотят вернуться к исходной теореме, формуле, гипотезе и так далее, иногда используют эпитет «классическая». (Примеч. перев.)

161

Андре Вейль (Andre Weil), один из наиболее прославленных математиков XX века, был братом героини французского Сопротивления и мистического философа Симоны Вейль. Он учился у Адамара в Коллеж де Франс. Следует отличать его от Германа Вейля (Hermann Weyl). (Исчезновение всякой разницы в написании по-русски, очевидно, лишь усложняет задачу «отличать» — и эта проблема в самом деле присутствует в русских математических текстах. — Примеч. перев.)

162

Для получения более ясной картины читателю все же может быть полезна формула, по которой получается характеристический многочлен матрицы 2x2. Общий вид такой матрицы (>a>b >c>d). Ее характеристический многочлен равен (a − x)×(d − x) − bc. Таким образом и получается x>2 − 11x + 28. Далее автор рассматривает характеристические многочлены с точностью до общего ненулевого множителя. (Примеч. перев.)

163

Возможно, лучше было бы говорить «от 1 до N нулей», поскольку нули иногда повторяются. Нули многочлена x>2 − 6x + 9 — это числа 3 и 3. Данный многочлен разлагается на множители как (x − 3)(x − 3). Поэтому вам может прийтись больше по душе говорить, что он имеет только один нуль, а именно 3. В строгом математическом смысле это «нуль кратности 2». Имеется, между прочим, способ приписывать подобную кратность любому нулю любой функции. Насколько известно, все нетривиальные нули дзета-функции имеют кратность 1, однако это пока не доказано. Если окажется, что какой-то нетривиальный нуль дзета-функции имеет кратность 2 или выше, то это само по себе не опровергнет Гипотезу, но произведет опустошение в некоторой части вычислительной теории.

164

На самом деле, конечно, речь идет об операторах. Математическая модель для описания динамических систем строится в терминах операторов. «Ансамбль» (в данном употреблении, кстати, это слово было введено Альбертом Эйнштейном) означает набор операторов, у которых общими являются некоторые статистические свойства.

165

Точнее говоря, сферой интересов Монтгомери была так называемая «задача числовых классов», доступное изложение которой можно найти в книге Кита Делвина «Математика: Новый золотой век», Columbia University Press, 1999.

166

Хэролд Даймонд — специалист по теории чисел. В настоящее время — профессор математики в Университете Иллинойса в Урбана-Шампейн.

167

Сарвадаман Чоула (1907-1995) — превосходный специалист по теории чисел, в основном работавший в Колорадском университете.

168

Стандартное введение в теорию случайных матриц: Мадан Лал Мехта. Случайные матрицы и статистическая теория энергетических уровней. New York: Academic Press. 1991.

169

Дайсон — еще один человек из Тринити, учившийся в этом колледже в начале 1940-х гг. По его воспоминаниям, состояние Харди, который в то время окончательно впал в депрессию, «было не слишком веселым».

170

Это поднимает интересный вопрос о том, в какой степени они могут являться «настоящими» теоремами. Некий результат, в котором предполагается справедливость ГР, с моей точки зрения, сам, строго говоря, является гипотезой — или, если угодно, подгипотезой, но уж никак не настоящей теоремой. С учетом того, что математика считается наиболее точной из всех наук, математики не слишком последовательны по поводу использования таких терминов, как «предположение», «гипотеза» и «теорема». Почему, например, Гипотеза Римана — «гипотеза», а не «предположение»? Я не знаю, и мне не удалось найти никого, кто мог бы мне это разъяснить. И на беглый взгляд кажется, что эти замечания применимы, по-видимому, и к другим языкам, а не только к английскому. По-немецки, кстати, Гипотеза Римана — Die Riemannsche Vermutung, от глагола vermuten — высказывать догадку. (Неудивительно. Древнегреческое слово «гипотеза» как раз и означает «предположение». — Примеч. перев.)

171

Майкл Берри — профессор физики в Бристольском университете в Англии. Возведен в рыцарское достоинство в июне 1996 г., став таким образом сэром Майклом Берри. Я очень старался упоминать его как Берри при описании его работ, сделанных до 1996 г., и как сэр Майкл после этого, но не гарантирую, что всегда был последователен.

172

Где-то в конце 1980-х Cray-1 был дополнен компьютером Cray X-MP.

173

Самой ранней ссылкой на закон Монтгомери-Одлыжко (именно под таким названием), которую мне удалось найти, является статья Николаса Каца и Питера Сарнака, опубликованная в 1999 г. Слово «закон» здесь, конечно, понимается в физическом, а не в математическом смысле. Это факт, установленный эмпирическим путем, как законы движения планет, сформулированные Кеплером. Это не математический принцип, подобный правилу знаков. В статье Сарнака и Каца на самом деле был доказан закон для дзета-функций над конечными полями (см. главу 17.iii), что позволило перекинуть мост между алгебраическим и физическим подходами к ГР.

175

Ответ не гласит «половина». Сказать «половина» означало бы перепутать середину и среднее. Среднее из четырех чисел 1, 2, 3, 8 510 294 равно 2 127 575, но половина из них меньше, чем 3.

176

Известного в математике как «распределение Пуассона». Здесь, кстати, повсюду присутствует число e: например, указанное число 6 321 есть 10 000(1 − 1/e).

177

Уравнение, которым задается изображенная на рисунке 18.5 кривая, имеет вид y = (320 000/π>2)x>2e>−4х∙x/π. Это скошенное распределение, а не симметричное, как гауссовское нормальное. Его пик находится при аргументе >1/>2π, т.е. 0,8862269…. Эту кривую для распределения последовательных интервалов ГУА предложил в качестве догадки Юджин Вигнер. Его догадка основывалась на небольшом количестве данных, собранных из экспериментов на атомном ядре. Позднее оказалось, что это не в точности правильная кривая, хотя она и находится в пределах ошибки около 1%. Истинная кривая, которую нашел Мишель Годен, описывается более сложным уравнением. Эндрю Одлыжко пришлось написать целую программу, чтобы ее нарисовать.

178

Свершившийся факт (франц.) (Примеч. перев.)

179

Уравнение живой силы — термин из истории механики. В современной русской научной литературе он мало распространен, и в переводе оставлено оригинальное латинское название. Данное уравнение выражает собой закон сохранения энергии при орбитальном движении. Здесь M — произведение гравитационной постоянной на массу того тела, вокруг которого обращается спутник, r — расстояние до фокуса, а a — главная полуось орбиты. (Примеч. перев.)

180

Хотя слово «хаос» и не применялось к этим теориям, пока физик Джеймс Йорк не ввел его в оборот в 1976 г. Бестселлер Джеймса Глейка 1987 г. «Хаос. Создание новой науки» остается лучшим введением в теорию хаоса для простых людей… если не считать пьесы Тома Стоппарда «Аркадия» 1993 г. (Русский перевод книги Глейка вышел в 2001 г. в издательстве «Амфора». — Примеч. перев.)

181

Лауреат медали имени Макса Планка 2003 г. за развитие квантовой теории металлов. (Примеч. перев.)

182

Чтобы у читателя не возникало ощущение систематического надувательства, стоит, возможно, заметить, что, например, √3 в характеристическом многочлене — это котангенс 30 градусов, т.е. угла поворота. (Примеч. перев.)

183

Курт Хензель (Гензель) (1861-1941) — еще один представитель семейного древа Мендельсонов. Его бабушка Фанни была сестрой композитора, а его отец Себастьян Хензель — ее единственным сыном. Себастьяну было 16 лет, когда Фанни умерла, а его отправили жить с семейством Дирихле (глава 6.vii), где он и оставался до своей женитьбы. Большая часть карьеры Курта прошла в Магдебургском университете в центральной Германии; он вышел на пенсию в 1930 г. Несмотря на свое еврейское происхождение, он, по-видимому, не пострадал при нацистах. «В целом Мендельсоны не испытали на себе весь ужас нюрнбергских антисемитских законов, поскольку большинство представителей семейства были крещены несколько поколений назад» (Купферберг X. Мендельсоны). В 1942 г. невестка Хензеля принесла его обширную математическую библиотеку в дар только что подвергшемуся нацификации Страсбургскому университету в оккупированном Эльзасе — университет заново открылся в ноябре того года под немецкой вывеской Reichsuniversität Strassburg (сейчас он снова во Франции). (Курт Хензель выступил также соавтором известного конспекта лекций Т. Моммзена о римских императорах; в течение двух зимних и одного летнего семестра эти лекции были «оазисом души» Себастьяна Хензеля, которому «было трудно примириться с тем, что Моммзен не написал истории римских императоров». — Примеч. перев.)


184

И как минимум один математик в письменном виде выразил сдержанный скептицизм. В рецензии на статью Конна 1999 г. «Следовые формулы в некоммутативной геометрии и нули дзета-функции Римана» Питер Сарнак (не являющийся ни математиком X, ни математиком Y) заметил: «Аналогии и вычисления в статье и в приложениях к ней многозначительны, симпатичны и замысловаты, и по этой причине представляется, что предложено нечто большее, чем просто еще одна эквивалентная переформулировка ГР. Однако рецензенту не очевидно, удастся ли на самом деле использовать развитые здесь идеи, в частности пространство X, для получения каких-нибудь новых результатов о нулях функции L(s, λ)». Функция L(s, λ), о которой пишет Сарнак, представляет собой один из тех аналогов дзета-функции Римана, которые упоминались в главе 17.iii.

185

Официально этот подход называется «вероятностная интерпретация Данжуа», по имени французского аналитика Арно Данжуа (1884-1974). Данжуа был профессором математики в Парижском университете с 1922 по 1955 г.

186

Это длинное шведское название буквально и означает: «Шведская компания по страхованию жизни». (Примеч. перев.)

187

«Прикасаясь к скучным формулам своей волшебной палочкой, он превращал их в поэзию», — вспоминал Гуннар Блом в своем очерке, включенном в собрание трудов Крамера. Крамер (1893-1985) — еще один «бессмертный». Он умер спустя несколько дней после своего 92-летия.

188

Я позаимствовал этот мысленный эксперимент из главы 3 книги «Простые числа и их распределение», которую написали Джеральд Тененбаум и Мишель Мендес-Франс (American Mathematical Society publications, 2000).

189

Хорошая статья на эту тему — «Нормально ли π?» Стена Вейгена (Mathematical Intelligencer. Vol. 7. № 3).

190

У меня имеется распечатка недавней статьи Хью Монтгомери и Каннана Сундарараджана «За пределами парных корреляций», которая наносит еще один удар по модели Крамера. Статья заканчивается такими словами: «…по-видимому, здесь происходит нечто такое, что еще предстоит понять». (Эта статья доступна по адресу:

http://arxiv.org/abs/math.NT/0003234 — Примеч. перев.)

191

Математика и правдоподобные рассуждения (1954). (Русский пер. под ред. С.А. Яновской. М.: Наука. 1975. — Примеч. перев.)

192

Фрэнклин написал в 2001 г. прекрасную книгу о нематематической теории вероятностей под названием «Наука догадок». Я рецензировал ее для журнала The New Criterion в июне того же года. (См.:

http://www.newcriterion.com/articles.cfm/franklin-derbyshire-2175Примеч. перев.)

193

Ради тех читателей, которых мое изложение воспламенило до такой степени, что они готовы немедленно бежать за покупкой какой-нибудь из математических программ, мне надо, видимо, заметить, что относительно достоинств различных таких программ ведутся яростные споры вполне в духе неувядающих дебатов на тему PC/Macintosh, причем создатель Mathematica Стивен Волфрам играет там роль Билла Гейтса. Будучи простым журналистом, я прошу считать себя на этой войне hors de combat (выбывшим из строя (франц.) — Примеч. перев.). Я определенно не занимаюсь пропагандой от имени Mathematica. Она была первой математической программой, которая мне попалась, и осталась единственной, которой я пользовался. Она всегда делала то, что я ей говорил. Если уж начистоту, то иногда требовалось ее слегка пинать, но мне никогда не попадалась программа, которую не приходилось бы время от времени пинать.

194

По-английски — root; на первый звук в этом слове и указывает буква ро, также представляющая звук «р» — в духе того, как греческая же буква мю (звук «м») использовалась в честь Мебиуса (см. главу 15). Математики часто применяют подобные фонетические соответствия в качестве мнемонических. Здесь может быть уместным упомянуть, наконец, что для англоязычного читателя ζ фонетически ассоциируется с буквой z. (Примеч. перев.)

195

Употребительных слов, особенно русских, не хватает, подобно тому как, по замечанию автора в главе 3, не хватает греческих букв; целые функции и целые числа имеют мало общего. (Примеч. перев.)

196

Хотя здесь нет прямой связи с нашими рассуждениями, я не могу удержаться и не сказать, в качестве интересного добавления, что одна из самых знаменитых теорем в теории функций комплексной переменной касается целых функций. Эту теорему сформулировал Эмиль Пикар (1856-1941). Теорема Пикара утверждает, что если целая функция принимает более одного значения — если, иными словами, она не равна просто-напросто постоянной, — то она принимает все (комплексные. — Примеч. перев.) значения, кроме, быть может, одного. Значение, которое не принимает функция e>z, — это как раз нуль.

197

Муравей Арг начинает свой путь из точки >1/>2 на вещественной оси (а не приходит, например, из «далекого юга» вдоль критической прямой). (Примеч. перев.)

198

Хотя в определении и есть некоторый произвол, для преодоления которого нет общего рецепта. Например, в программе Mathematica 4 функция Li(x) реализована как одна из встроенных функций, Loglntegral[х]. Для вещественных чисел она ровно такая, как я ее описал, — собственно, ее я и использовал для построения графика Li(x) в главе 7.viii. Однако для комплексных чисел определение интеграла, реализованное в Mathematica, слегка отличается оттого, которое использовал Риман. Поэтому для своих комплексных вычислений я не использовал определение Loglntegral[х] из Mathematica, а определил там Li(x>1/2+ir) как ExpIntegralEi[(1/2 + Ir)Log[x]].

199

Одним глазом разглядывая этот список, а другим — рисунок 21.3, можно видеть, что тенденция, согласно которой первые несколько нулей отправляются в числа с отрицательными вещественными частями, представляет собой лишь случайный эффект, и дело вскоре поправляется.

200

На рисунках 21.5 и 21.6 нуль, комплексно сопряженный к k-му нулю, обозначен как (−k)-й нуль. Разумеется, неверно, что ρ' = −ρ.

201

Заметим, что 639:1050 = 0,6085714…. Для больших чисел N вероятность того, что N свободно от квадратов, равна ~ 6/π>2, т.е. 0,60792710…. Вспоминая из главы 5 найденное Эйлером решение базельской задачи, можно заметить, что эта вероятность равна 1/ζ(2). Это верно и в общем случае. Вероятность того, что положительное целое число N, выбранное случайным образом, не делится на п-ю степень никакого целого числа, равна ~ 1/ζ(n). Например, среди всех чисел, не превышающих 1000 000, в действительности 982 954 не делятся ни на какую шестую степень; при этом 1/ζ(6) равняется 0,98295259226458….

202

На домашней страничке Ульрике на веб-сайте Ульмского университета вывешена фотография, на которой она стоит рядом с надгробным камнем Бернхарда Римана в итальянской Селаске.

203

Джонатан Китинг — профессор прикладной математики в Бристольском университете в Англии. Он тесно сотрудничал с сэром Майклом Берри в исследовании физических аспектов ГР.

204

«Нули преобразования Меллина от функции Эрмита имеют вещественную часть одна вторая» (1986). Соавтором Бампа по доказательству был некто Е.К.-С. Нг, о котором мне больше ничего не известно.

205

Независимое федеральное агентство в США, созданное по решению Конгресса США в 1950 г.; среди его целей первой названа цель способствовать развитию науки. (Примеч. перев.)

206

Мне, по крайней мере, так кажется. Однако один профессиональный математик, познакомившийся с рукописью этой книги, выразил по этому поводу искреннее недоверие. Математикам исключительно сложно всерьез принять мысль о том, что занятиями математикой можно зарабатывать серьезные деньги.

207

От англ. clarity — ясность, прозрачность. (Примеч. перев.)

208

Мартин Хаксли — профессор чистой математики из университета Уэльса в Кардиффе.

209

Без примесей, чистокровный (франц.). (Примеч. перев.)

210

Гипотеза Римана эквивалентна, в частности, ряду утверждений о делителях натуральных чисел, например, такому утверждению: «Для всякого натурального числа n ≥ 5041 сумма его делителей меньше величины en ln(ln n)». Здесь γ — упоминавшееся число Эйлера-Маскерони, в России чаще называемое просто постоянной Эйлера. (Примеч. перев.)

211

Цепь событий в наикратчайшем изложении такова. Метод, принятый в Principia Mathematica, не давал гарантии от ошибок, подобных той, на которую Рассел обратил внимание в работе Фреге. Программа «метаматематики» Гильберта ставила целью объять и логику, и математику в единый четкий формализм. Это послужило мотивировкой исследований Курта Геделя и Алана Тьюринга. Гедель доказал ряд важных теорем путем построения соответствия между символами типа гильбертовых и числами; Тьюринг закодировал и инструкции, и данные в виде чисел в своей идее «машины Тьюринга». Ухватившись за эту идею, Джон фон Нейман развил концепцию хранящейся в памяти программы — концепцию, на которой основано все современное программное обеспечение и согласно которой и код, и данные можно единообразно представить в памяти компьютера…

212

В письме к брату от 26 июня 1854 г. он упоминает возобновление mein altes Übel — «моей старой болезни», вызванное разыгравшейся непогодой.

213

Ныне — в муниципалитете Вербания.

214

Weender Chaussee было позднее переименовано в Bertheaustrasse.

215

В оригинале песню Тома Апостола «Где же нули у функции дзета» можно послушать (и даже посмотреть видеоклип с исполнением первого куплета) по адресу:

http://olimu.com/Riemann/Song.htm. (Примеч. перев.)

216

Вилликенс и его Дина. (Примеч. перев.)

217

В Англии, как правило, в регби играют в частных школах (а в футбол — в остальных). (Примеч. перев.)

218

«0 святой отец, прими мою исповедь. Я оставил одну бедную девочку в чертовски трудном положении». (Примеч. перев.)

219

Поскольку в данном случае — при движении вверх по критической прямой — t, очевидно, положительно, указание на его модуль излишне, если только оно не служит попаданию в размер стиха. (Примеч. перев.)

220

Упомянутые в главе 8.ii условия Коши-Римана, которые определяют «хорошо ведущие себя функции», как раз выделяют такие функции, для которых зависимость от контура, по которому ведется интегрирование между двумя заданными точками на комплексной плоскости, носит контролируемый, «дискретный» характер. (Примеч. перев.)


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.