Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [127]

Шрифт
Интервал

После выхода в свет «Простой одержимости» я получил несколько бумажных и электронных писем по поводу данного раздела. Один мой корреспондент воспринял мой рассказ как «едкий сарказм» — характеристика, которая привела меня в недоумение. Всякий, кто думает, что предпоследний абзац в главе 8.iii представляет собой «едкий сарказм», просто не много оттуда понял. Я совершенно не собирался излагать это с каким бы то ни было сарказмом, а, наоборот, сохранял в споре полный нейтралитет. Однако мой собственный нейтралитет не может помешать мне сообщить следующий простой факт: большинство из тех, кто мне писал по данному поводу, выбирают сторону Сельберга, несмотря на не подлежащий сомнению факт, что Эрдеша практически все буквально обожали.

Например, нижеследующее написано заслуженным профессором в отставке из Сиракузского университета Эриком Хеммингсеном (приводится с его разрешения). Профессор Хеммингсен сначала обращает внимание на то, что, хотя Сельберг действительно работал в Институте высших исследований в то время, когда его статья вышла из печати, всю работу он в действительности проделал, пока был в Сиракузском университете. Профессор Хеммингсен далее пишет:

Сельберг находился с визитом в Институте в течение академического 1947/48 года, когда он пересекся с одним из моих коллег, который в тот год также находился там с визитом. Сиракузский университет был первым, кто предложил Сельбергу исследовательскую работу в Америке, и вместе с женой они приехали в Сиракузы как раз перед началом осеннего семестра 1948 года. Они вернулись в Принстон летом 1950 года.

Когда я приехал в Сиракузы в сентябре 1947 года, Эрдеш уже находился там. Он был моим старым знакомым по Пенсильванскому университету, где он уже работал, когда я там появился в 1941 году в качестве аспиранта. Мы оба провели в Пенсильванском университете несколько лет, и он был очень любезен по отношению ко мне.

Сельберг, естественно, был очень рад, что ему удалось найти свое доказательство Теоремы о распределении простых чисел, и примерно равный ему по возрасту коллега, выказывавший серьезный интерес к теории чисел, представлялся подходящей фигурой для того, чтобы говорить с ним о своей работе. К сожалению, это было огромной ошибкой, настолько печальной [sic], что теперь некоторые люди считают, что доказательство принадлежит Эрдешу. После смерти Эрдеша появилась статья в Notices of the Amer. Math. Soc., автор которой дошел до того, что утверждал, будто Теорема о распределении простых чисел — это лучшая из работ, сделанных Эрдешем. Меня это исключительно покоробило, и я решил записать свои собственные впечатления о том, что имело место. Этот рассказ в настоящее время хранится в математической библиотеке Сиракузского университета.

A3

«…до самого недавнего времени не исключалось…» Специалист по аналитической теории чисел Сид Грэм из Мичиганского университета замечает, что имелись гораздо более ранние результаты, ставящие под сомнение теорему 15.1. Это, в первую очередь, результат Ингэма 1942 года (О двух предположениях в теории чисел. Amer. J. Math. Vol. 64. P. 313-319). Упомянутый в тексте результат Одлыжко и Риле основан на работе Ингэма. Сид пишет: «Хотя гипотеза Мертенса была опровергнута только в 1985 году, к ней относились скептически уже задолго до этого».

A4

«…у муравья Арга есть брат-близнец…» Один из читателей заметил, что рабочие муравьи, строго говоря, самки, так что это должна быть «сестра».

A5

«Майкл Берри показал…» Сэр Майкл написал мне очень любезное и занятное письмо, в котором поблагодарил за книгу и добавил в мое собрание математических баек парочку новых. Кроме того, он подверг критике один момент, который, как мне кажется, самое место обсудить именно здесь. С его разрешения я в точности воспроизвожу его письмо. Вот что он пишет:

<…> написанное вами, хотя и верно само по себе, упускает из виду весьма существенное обстоятельство, которое следует из квантовой аналогии. А именно — предсказание и детальное описание>(1),(2) отклонений от ГУА-статистики в корреляциях между сильно разнесенными нулями. Эти отклонения заметил Эндрю Одлыжко (он наблюдал их в численной дисперсии положений нулей); он задался вопросом, не являются ли они результатом ошибки в его программе. Он чрезвычайно любезно предоставил мне полученные им данные, из которых получалось, что отклонения точно соответствуют «квантовой» теории, за исключением некоторых осцилляций малого масштаба, объяснение которым теперь нашли Джон Китинг и Эжен Богомольни>(3). С моей точки зрения, данное ими объяснение этих отклонений является сильнейшим свидетельством в пользу гипотезы Римана; оно, кроме того, помещает неуловимый оператор в класс квантовых систем с классическим хаосом, а не в класс случайных матриц.

(1) Berry M.V. Semiclassical formula for the number variance of the Riemann Zeros, in: Nonlinearity Vol. 1. 1988. P. 399-407.

(2) Berry M.V. and Keating J.P. The Riemann Zeros and Eigenvalue Asymptotics, in: the SIAM Review. Vol. 41. №2. 1999. P. 236-266. [SIAM означает Society for Industrial and Applied Mathematics.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.