Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [128]

Шрифт
Интервал

]

(3) Bogomolny E. and Keating J.P. Asymptotics of the pair correlation of Riemann zeros. 1999.

A6

В то время, когда я работал над книгой, я не знал о книге Джулиана Хейвила «Гамма: Изучение константы Эйлера», которая вышла примерно в то же время, что и «Простая одержимость», и целиком посвящена этой загадочной гамме. Она прекрасно написана и содержит много интересной математики, хотя и на несколько более высоком уровне, чем в моей книге. Я рекомендую ее каждому, кто хочет узнать, почему число 0,577215664901532860606512… так чертовски важно.

A7

Книга Титчмарша вышла в переработанном (Роджером Хит-Брауном) издании в 1986 году.

A8

Сэр Майкл Атья повторил тут вещь довольно известную: идеи о том, что алгебра = время, а геометрия = пространство, восходят по крайней мере к Гамильтону (т.е. к 1840-м годам).

A9

«„Ансамбль“ (в данном употреблении, кстати, это слово было введено Альбертом Эйнштейном)…» Это, по-видимому, неверно. Один физик обратил мое внимание, что одна из глав в книге Уилларда Гиббса «Основные принципы статистической механики» называется «О движении систем или ансамблей систем на длительных промежутках времени». Эта книга опубликована в 1902 году, т.е. за три года до того, как Эйнштейн с блеском ворвался в физику, написав три статьи в Annalen der Physik. По-видимому, Гиббс был первым, кто употреблял этот термин таким образом. Однако я был бы весьма благодарен, если бы кто-нибудь смог дать более точную привязку.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.