Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [49]
Итак, мы начинаем приближаться к Гипотезе Римана. Просто чтобы освежить память, сформулируем ее еще раз:
Все нетривиальные нули дзета-функции имеют вещественную часть, равную одной второй.
И мы уже знаем, что такое дзета-функция! Если s — некоторое число, большее единицы, то дзета-функция определяется таким выражением (9.1):
или же, несколько более изысканным образом,
где слагаемые бесконечного ряда отвечают всем положительным целым числам. Мы видели, что если к этой сумме применить процедуру, напоминающую решето Эратосфена, то ее можно переписать как
то есть
где множители в бесконечном произведении отвечают всем простым числам.
Таким образом, получаем
что я и назвал Золотым Ключом.
Пока все прекрасно, но что это там говорилось насчет нетривиальных нулей? Что такое нуль функции? Что представляют собой нули дзета-функции? И когда они нетривиальны? Не переживайте, сейчас все будет!
Позабудем на время о дзета-функции. Рассмотрим бесконечную сумму совсем другого типа:
Сходится ли она вообще когда-нибудь? Без сомнения. Если x равно >1/>2,то сумма представляет собой просто-напросто выражение 1.1 из главы 1.iv, поскольку (>1/>2)>2 = >1/>4, (>1/>2)>3 = >1/>8 и т.д. Следовательно, S(>1/>2) = 2, потому что именно к этому значению ряд и сходится. Более того, если вспомнить правило знаков, то (−>1/>2)>2 = >1/>4, (−>1/>2)>3 = −>1/>8 и т.д., а следовательно, S(−>1/>2) = >2/>3 согласно выражению 1.2 из главы 1.v. Аналогичным образом выражение 1.3 говорит нам, что S(>1/>3) = 1>1/>2 выражение 1.4 — что S(−>1/>3) = 1>3/>4. Легко получить и еще одно значение для этой функции: S(0) = 1, поскольку нуль в квадрате, кубе и т.д. все равно равен нулю, и остается только единица, с которой ряд начинается.
Однако если x равен 1, то S(1) есть 1 + 1 + 1 + 1 + …, а этот ряд расходится. При x равном 2 расходимость еще более явная: 1 + 2 + 4 + 8 + 16 + …. Когда x равен −1, происходит странная вещь: по правилу знаков сумма принимает вид 1 − 1 + 1 − 1 + 1 − 1 + …. Такая сумма равна нулю, если взять четное число членов, и единице, если нечетное. Данное выражение определенно не убегает на бесконечность, но оно и не сходится. Математики рассматривают такое поведение как некоторый вид расходимости. Ситуация с x = −2 еще хуже: сумма 1 − 2 + 4 − 8 + 16 − … ведет себя так, словно убегает на бесконечность сразу по двум направлениям. Такая ситуация определенно далека от сходимости, и если вы скажете, что здесь налицо расходимость, то никто с вами спорить не будет.
Короче говоря, функция S(x) имеет значения, только когда x лежит в границах между −1 и 1, не включая сами границы. В других случаях у нее значений нет. В таблице 9.1 приведены значения функции S(x) для аргументов x между −1 и 1.
x | S(x) |
---|---|
−1 или меньше | (нет значений) |
−0,5 | 0,6666… |
−0,333… | 0,75 |
0 | 1 |
0,333… | 1,5 |
0,5 | 2 |
1 или больше | (нет значений) |
Таблица 9.1. Значения функции S(x) = 1 + x + x>2 + x>3 + ….
Вот и все, что можно извлечь из бесконечной суммы. График этой функции показан на рисунке 9.1; на этом графике у функции нет вообще никаких значений к западу от −1 и к востоку от 1. Используя профессиональную терминологию, можно сказать, что область определения этой функции заключена строго между −1 и 1.
Рисунок 9.1. Функция S(x) = 1 + x + x>2 + x>3 + ….
Но смотрите, нашу сумму
можно переписать в таком виде:
Ряд в скобках здесь равен просто S(x): каждый член, встречающийся в одном, встречается также и в другом из двух выписанных выше рядов, а это и означает, что они совпадают.
Другими словами, S(x) = 1 + xS(x). Перенося самый правый член в левую часть, получаем равенство S(x) − xS(x) = 1, или, другими словами, (1 − x)S(x) = 1. Следовательно, S(x) = 1/(1 − x). Возможно ли, чтобы за нашей бесконечной суммой скрывалась столь простая функция, как 1/(1 − x)? Может ли равенство
оказаться верным?
Без сомнения, может. Если, например, x = >1/>2, то 1/(1 − x) равняется 1/(1 − >1/>2), что есть 2. Если x = 0, то 1/(1 − x) равно 1/(1 − 0), что есть 1. Если x = −>1/>2, то 1/(1 − x) равняется 1/(1 − (−>1/>2)), т.е. 1:1>1/>2 что есть >2/>3. Если x = >1/>3, то 1/(1 − x) равняется 1/(1 − >1/>3) т.е. 1:>2/>3, что есть 1>1/>2. Если x = −>1/>3, то 1/(1 − x) равняется 1/(1 − (−>1/>3)), т.е. 1:1>1/>3, что есть >3/>4. Все сходится. Для аргументов −>1/>2, −>1/>3, 0, >1/>3, >1/>2, при которых мы знаем значения функции, значения бесконечного ряда S(x) такие же, как и значения функции 1/(1 − x). Похоже, что этот ряд и эта функция — одно и то же.
Рисунок 9.2. Функция 1/(1 − x).
Но они не одно и то же, поскольку у них различные области определения, как это видно из рисунков 9.1 и 9.2. S(x) имеет значения только между −1 и 1, не включая границы; функция же 1/(1 − x) имеет значения везде, за исключением точки x = 1. Если x = 2, то ее значение равно 1/(1 − 2), то есть −1. Если x = 10, то значение равно 1/(1 − 10), то есть −>1/>9. Если x = −2, то значение равно 1/(1 − (−2)), то есть >1/>3. Можно нарисовать график функции 1/(1 − x). Как видно, он совпадает с предыдущим графиком в промежутке между −1 и 1, но имеет еще и значения к западу от −1 (включая саму −1) и к востоку от 1.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.