Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [18]

Шрифт
Интервал

плотность простых чисел есть 1/ln N. Именно так и есть. В конце первого раздела данной главы мы подсчитали число простых в каждом блоке из 100 чисел, предшествующих 100, 500, 1000, 1 миллиону и 1 триллиону. Результаты этих подсчетов были такими: 25, 17, 14, 8 и 4. Соответствующие значения выражения 100/ln N (т.е. его значения при N = 100, 500 и т.д). с точностью до ближайшего целого числа таковы: 22, 16, 14, 7 и 4. Другой способ выразить то же самое — это сказать, что в окрестности большого числа N вероятность того, что некоторое число окажется простым, ~ 1/ln N.

Руководствуясь той же грубой логикой, можно оценить величину N-го простого числа. Рассмотрим отрезок числового ряда от 1 до K для какого-нибудь большого числа K. Если в этом интервале простых чисел, то в среднем следует ожидать, что первым простым, которое мы встретим, будет число К:C, вторым — число 2K:C, третьим — 3K:C и т.д. N-е простое будет находиться где-то около числа NK:C, а C-е (другими словами, последнее простое в этом интервале) окажется около числа K:C, что, понятно, равно просто K. И вот, если верна ТРПЧ, то количество простых чисел C есть К/ln K, а потому N-е простое в действительности встретится вблизи числа NK:(К/ln K), или, другими словами, вблизи числа Nln K. Поскольку большинство чисел в этом интервале сравнимы по величине с числом K, здесь можно поменять местами N и K, а потому N-е простое есть по величине ~ N/ln N. Я знаю, что такое рассуждение выглядит небольшим жульничеством, но в действительности оно дает неплохую оценку, которая к тому же становится все лучше и лучше «по принципу волны». Эта оценка предсказывает, например, что триллионное простое число равно 27 631 021 115 929, а на самом деле триллионное простое число есть 30 019 171 804 121, так что ошибка составляет 8 процентов. Выраженные в процентах ошибки для тысячного, миллионного и миллиардного простого числа равны соответственно 13, 10 и 9.

Следствия из ТРПЧ

Вероятность того, что число N простое, ~ 1/ln N.

N-е простое число ~ Nln N.

Эти утверждения не просто следуют из ТРПЧ; сама ТРПЧ также следует из них. Если математически доказать справедливость любого из них, то в качестве следствия получится ТРПЧ. Каждый из этих результатов равносилен ТРПЧ, и его можно считать просто альтернативной формулировкой этой теоремы. В главе 7.viii мы познакомимся с другим, более важным способом переформулировать ТРПЧ.

Глава 4. На плечах гигантов

Первым человеком, которому открылась истина, содержащаяся в Теореме о распределении простых чисел (ТРПЧ), был Карл Фридрих Гаусс, живший с 1777 по 1855 год. Гаусс, как уже говорилось в главе 2.v, вполне может претендовать на звание величайшего математика из всех вообще когда-либо живших. В течение своей жизни он был известен как Princeps Mathematicorum — Князь Математиков, а после его смерти король Ганновера Георг V распорядился о выпуске памятной медали в его честь, с указанием этого титула.[21]

Гаусс был чрезвычайно невысокого происхождения. Его дед был безземельным крестьянином, а отец — перебивавшимся с места на место садовником и каменщиком. Гаусс ходил в самую скромную местную школу. Знаменитый эпизод, который, как рассказывают, произошел в этой школе, имеет гораздо больше шансов оказаться правдой, чем большинство обычных историй такого рода. Однажды учитель, желая устроить себе получасовой перерыв, дал классу задание сложить друг с другом первые 100 чисел. Почти мгновенно Гаусс бросил грифельную доску на учительский стол со словами «Ligget se!», что на местном крестьянском диалекте того времени означало: «Вот он [ответ]!» Карл мысленно расположил числа горизонтально в порядке (1, 2, 3, …, 100), затем в обратном порядке (100, 99, 98, …, 1), а после этого сложил два списка вертикально: (101, 101, 101, …, 101). Получилось 100 раз число 101, а поскольку числа были выписаны дважды, ответ равен половине этой суммы, т.е. 50 умножить на 101, что равно 5050. Совсем просто, когда вам об этом рассказали, но все же это не тот способ, который сам собой придет в голову обычному десятилетнему мальчику; да и обычному взрослому лет в тридцать тоже, если уж на то пошло.

Гауссу повезло в том, что учителя разглядели его способности и готовы были предпринять некоторые усилия, чтобы их развить. Еще большее везение состояло в том, что ему случилось жить в маленьком германском герцогстве Брауншвейг — в пределах той самой кляксы, что разделяет на две части королевство Ганновер на карте из главы 2.ii. В Брауншвейге в то время правил Карл-Вильгельм-Фердинанд, носивший полный титул герцог Брауншвейга-Вольфенбюттеля-Беверна. Мы уже встречались с ним, хотя в тот момент этого и не подозревали: известный как отважный воин, он носил чин генерал-фельдмаршала прусской армии и командовал теми самыми соединенными прусско-австрийскими силами, которые французы остановили у Вальми 20 сентября 1792 года.

Карл-Вильгельм поступил воистину благородно. Если существует Рай для математиков, то для герцога там должны быть зарезервированы роскошные апартаменты, чтобы он мог останавливаться в них всякий раз, как соберется заехать. Услыхав о таланте мальчика Гаусса, герцог распорядился, чтобы его привели к нему. Молодой Гаусс в тот момент не мог похвастаться значительными успехами на ниве светского этикета. Позднее, в течение своей жизни, после длительного знакомства с дворами и университетами, он производил впечатление человека мягкого и приветливого, но это не могло скрыть грубоватые черты лица и коренастую фигуру, изобличавшие крестьянское происхождение. Однако герцог оказался достаточно проницательным, чтобы с первого же взгляда не ошибиться в мальчике; впоследствии он оставался его другом, пока смерть не разлучила их, и обеспечивал постоянную финансовую поддержку, позволившую молодому Гауссу сделать блестящую карьеру в качестве математика, физика и астронома.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.