Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [17]

Шрифт
Интервал

математическая теория многозначных функций. Бернхард Риман был знатоком этой теории, и мы познакомимся с его идеями в главе 13.v. Но сейчас не время и не место для этого, и я не собираюсь тащить сюда сундук, набитый подобными вещами. Во всяком случае, что касается меня, то железное правило состоит в том, что на один аргумент — самое большее одно значение (ни одного значения, разумеется, если аргумент не лежит в области определения функции). Квадратный корень из 1 равен 1, квадратный корень из 4 равен 2, квадратный корень из 9 равен 3. Означает ли это, что я не признаю того факта, что −3 умножить на −3 даст 9? Разумеется, я его признаю, я просто не включаю его в мое определение «квадратного корня». Вот мое определение квадратного корня (по крайней мере на данный момент): квадратный корень из N есть единственное неотрицательное число (если таковое имеется), которое при умножении само на себя дает N.


VIII.

По счастью, показательная функция не доставляет нам подобных хлопот. Вы можете шутя обратить ее и получить функцию, которая при выборе аргументов, получаемых друг из друга умножением, дает значения, получаемые друг из друга сложением. Разумеется, как и в случае показательных функций, обратные им функции также образуют семейство, зависящее от множителя; и, как и с показательной функцией, математикам намного, намного больше всех остальных нравится та, к значениям которой прибавляется единица, когда аргументы умножаются на e. Получаемую функцию называют логарифмической, а обозначают ln.[20] «Логарифм!» — вот слово, которое возникло в голове математика при вспышке лампочки, когда он увидел таблицу 3.2. Если y = e>x, то x = ln y. (Отсюда, кстати, путем простой подстановки следует, что для любого положительного числа у выполнено y = e>ln y — факт, которым мы не преминем как следует воспользоваться в дальнейшем.)

В математических сюжетах, имеющих отношение к данной книге — то есть к Гипотезе Римана, — логарифмическая функция присутствует повсеместно. Мы поговорим о ней куда более подробно в главах 5 и 7, и она будет играть роль настоящей звезды нашего рассказа, когда в главе 19 мы повернем наконец Золотой Ключ. Пока же давайте примем на веру, что это — функция в только что описанном смысле, по-настоящему важная математическая функция, и при этом обратная к показательной функции: если y = e>x, то x = ln y.

Теперь я перейду прямо к сути дела и покажу вам логарифмическую функцию, но вместо того, чтобы двигаться вперед шагами, соответствующими умножению на e, давайте умножать аргументы на 1000. Как мы уже говорили, когда функцию представляют в виде таблицы, надо выбрать аргументы (а также число знаков после запятой — в нашем случае четыре). Клянусь, что это та же самая функция. Чтобы лучше было видно, что тут происходит, я справа добавил в таблицу еще две колонки: первая из них — это просто правая колонка из таблицы 3.2, а вторая выражает в процентах отклонение нашей колонки номер 2 от колонки номер 3. Результат приведен в таблице 3.3.

Nln NN/π(N)Ошибка, %
1 0006,90785,952416,0409
1 000 00013,815512,73928,4487
1 000 000 00020,723319,66655,3731
1 000 000 000 00027,631026,59013,9146
1 000 000 000 000 00034,538833,50693,0794
1 000 000 000 000 000 00041,446540,42042,5386

Таблица 3.3.

Представляется разумным следующее утверждение: N/π(N) близко к ln N, причем тем ближе, чем больше становится N.

У математиков есть специальная запись для этого: N/π(N) ~ ln N. (Читается так: «N, деленное на π(N), асимптотически стремится к ln N»). Волнистый знак в этой формуле по науке называется «тильда», однако, судя по моему опыту, математики нередко называют его просто «волной».

Если слегка переоформить этот факт, следуя обычным правилам алгебры, то мы получим следующее утверждение.

Теорема о распределении простых чисел

π(N) ~ N/ln N

Разумеется, мы эту теорему не доказали — мы просто увидели, что такое утверждение правдоподобно. Это очень важный результат, настолько важный, что он называется Теоремой о распределении простых чисел. Это не какая-то там теорема о распределении простых чисел, нет, а Теорема о Распределении Простых Чисел. Специалисты по теории чисел нередко пишут просто «ТРПЧ», и в этой книге мы так и будем поступать.


IX.

И наконец, получим два следствия из ТРПЧ (в предположении, конечно, что она верна). Чтобы вывести эти следствия, сначала заметим, что в некотором смысле (логарифмическом смысле!) при работе со всеми числами вплоть до некоторого большого N большинство из этих чисел вполне сравнимы по величине с самим N. Например, среди всех чисел от 1 до одного триллиона более 90 процентов имеют 12 или более разрядов и в этом смысле вполне сравнимы с триллионом (у которого 13 разрядов), а не, скажем, с одной тысячей (с ее четырьмя разрядами).

Если на интервале от 1 до N имеется N/ln N простых чисел, то средняя плотность простых в этом интервале составляет 1/ln N. А поскольку большинство чисел в этом интервале сравнимы по размеру с числом N в том грубом смысле, который я только что описал, то справедливым будет заключение, что в районе числа N плотность простых чисел есть 1/ln 


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.