Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [111]

Шрифт
Интервал

Li(x). В нем — корень происходящего, и дело тут нешуточное. Сначала я в общих чертах расскажу, что он означает и как он попал в выражение (21.1). А потом разберу его на части и покажу, почему он играет ключевую роль для понимания распределения простых чисел.


III.

Знак ∑ — это приглашение к тому, чтобы суммировать, т.е. складывать многое в одно. На множество, по которому производится суммирование, указывает маленькая буква ρ под знаком ∑. Эта буква — не латинская p, а ро — семнадцатая буква греческого алфавита, причем в данном случае она фигурирует в значении «корень».[194] Для вычисления этого вторичного члена надо сложить друг с другом Li(x) для всех корней, по очереди придавая букве ρ значение, равное каждому из корней. Что это, кстати говоря, за корни? Ясное дело, ведь это нетривиальные нули дзета-функции Римана!

Как же все эти нули попали в выражение для J(x)? Объяснить это я могу лишь в общих чертах. Вспомним выражение, которое мы, повернув Золотой Ключ, получили в главе 19:

Мы говорили, что у математиков есть способ обратить это выражение — вывернуть его наизнанку, т.е. выразить J(x) через дзета-функцию. Процедура обращения в действительности и длинна, и сложна; в большинстве из составляющих ее шагов задействована математика, выходящая за рамки того, что приводится в этой книге. Поэтому-то я и перескочил прямо к окончательному результату — выражению (21.1). Тем не менее, как мне кажется, я в состоянии объяснить одну часть этой процедуры. Дело в том, что один шаг в этом обращении заключается как раз в выражении дзета-функции через ее нули.

Сама по себе идея выражения функций через их нули не несет в себе особой новизны для тех, кто изучал алгебру в старших классах. Рассмотрим старые добрые квадратные уравнения, выбрав в качестве примера то, которое мы использовали в главе 17.iv, а именно z>2 − 11z + 28 = 0 (однако будем писать букву z вместо x, поскольку сейчас мы находимся в царстве комплексных чисел). Левая часть этого уравнения, разумеется, представляет собой функцию, причем полиномиальную функцию (т.е. многочлен). Если мы подставим в нее любое значение аргумента z, то после выполнения определенных арифметических действий получим значение функции. А если, скажем, мы подставим аргумент 10, то значением функции будет 100 − 110 + 28, что дает 18. Если подставим аргумент i, то значением функции будет 27 − 11i.

А каковы решения уравнения z>2 − 11z + 28 = 0? Как мы видели в главе 17, это 4 и 7. При подстановке любого из этих чисел в левую часть уравнение превращается в верное равенство, поскольку левая часть оказывается равной нулю. Другой способ выразить то же самое — это сказать, что 4 и 7 являются нулями функции z>2 − 11z + 28.

Теперь, зная нули, мы можем разложить эту функцию на множители. Она разлагается на множители как (z − 4)(z − 7). По правилу знаков это можно записать и как (4 − z)(7 − z). Еще один способ записи — это 28(1 − z/4)(1 − z/7). Смотрите: так или иначе, мы выразили функцию z>2 − 11z + 28 через ее нули! Разумеется, такое можно делать не только для квадратичных функций. Многочлен пятой степени z>5 − 27z>4 + 255z>3 − 1045z>2 + 1824z − 1008 тоже можно записать через его нули (каковыми являются числа 1, 3, 4, 7, 12). Вот как: −1008(1 − z/1)(1 − z/3)(1 − z/4)(1 − z/7)(1 − z/12). Любую полиномиальную функцию можно переписать через значения ее нулей.

Полиномиальные функции обладают интересным свойством с точки зрения теории функций комплексной переменной. Область определения полиномиальной функции составляют все комплексные числа. Полиномиальная функция никогда не «обращается в бесконечность». Нет такого значения аргумента z, при котором оказалось бы невозможным вычислить ее значение. При вычислении значения полиномиальной функции для любого заданного значения аргумента используются только возведение аргумента в положительные целые степени, умножение этих степеней на числа и сложение полученных результатов друг с другом. Такое можно проделать со всяким числом.

Функции, область определения которых составляют все комплексные числа и которые ведут себя достаточно симпатичным образом (для чего имеется точное математическое определение!), называются целыми функциями.[195] Все полиномиальные функции — целые. Показательная функция — тоже целая. Однако рациональные функции, которые мы рассматривали в главе 17.ii, не целые, потому что знаменатели в них могут обращаться в нуль. Функция ln также не является целой: у нее нет значения при нулевом аргументе. Подобным же образом у дзета-функции Римана нет значения при аргументе, равном единице, а потому она не является целой функцией.

Целая функция может не иметь нулей вовсе (как, например, показательная функция: равенство e>z = 0 никогда не выполняется), может иметь их несколько (как, например, полиномиальные функции: числа 4 и 7 — нули функции z>2 − 11z + 28), а может — бесконечно много (как, например, синус, который обращается в нуль при всех целых кратных числа π).[196] Ну и раз полиномиальные функции выражаются через свои нули, интересно, можно ли все целые функции выразить подобным же образом? Пусть у нас есть какая-нибудь целая функция — назовем ее


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.