Программирование игр и головоломок - [75]

Шрифт
Интервал

>1 + 1, хотя j>2 и больше j>1, потому что это — другое появление того же символа, и их не нужно смешивать. Поэтому достаточно ограничиться по поводу этого появления символа обращением к таблице в ее части от p>1 + 2 до m.

Головоломка 37.

Рассмотрим прямоугольник пробелов, вертикальная граница которого расположена в столбце j и располагающийся вправо от этого столбца в строках от i>1 до i>2. Его основание равно inf (l[i>1 : i>2]), а его площадь есть произведение этого основания на его высоту i>2i>1 + 1.

Для столбца j нужно найти максимум этой величины, когда i>1 меняется от 1 до n − 1 (n — число строк), а i>2 — от i>1 + 1 до n.

Когда вы переходите к следующему столбцу, то каждое l уменьшается на 1. В строке, в которой стояла единица, оно становится нулем. Там, где l было равно 0, его нужно вычислить заново. Вы можете попробовать схитрить при вычислении величины inf (l).

В центральном цикле любое введение нового члена может только уменьшить значение минимума.

Головоломка 39.

Рассмотрим значения S для строк i и i' > i. Очевидно

S (i, j) = S (i, i' − 1) + S (i', j).

Если S (i, i' − 1) положительно, то S (i, j) > S (i', j) и строка i остается строкой, которая может содержать максимум.

Но если S (i, i' − 1) < 0, то S (i, j) < S (i', j).

Максимум нужно тогда искать либо среди S (i, j) для j < i', либо среди S (i', j) для ji'.

Заметим, что S (i', i') = а[i'].

Мы собираемся пробежать строку S (1, …) вплоть до первого индекса i>1 , для которого S становится отрицательным. Тогда мы начнем пробегать строку S (i>1 + 1, …), и т. д.

Отсюда следует, что в каждый данный момент нужно знать максимальную подпоследовательность в уже пройденной части; эта подпоследовательность задается номером начала r, номером конца q и своей суммой m. С другой стороны, нужно знать наилучшую заключительную подпоследовательность S (k, i − 1), предполагая, что вектор пройден вплоть до поля i − 1. Обозначим через s значение суммы этой заключительной подпоследовательности. Пусть k — номер отроки, дающий этой сумме максимальное значение, а s — сумма всех членов, начиная с k.

Если сумма s положительна, то она и образует максимум на строке с номером k. При переходе к i число a[i] добавляется к s. Если s отрицательно, то новый элемент с номером i и становится оптимальной строчкой, и нужно взять s = а[i].

В этих двух случаях число s нужно сравнить с оптимумом m. Если s оказывается больше, то m нужно заменить на s. Попытаемся составить программу, исходя из того, что мы сейчас обсудим. Нужно уточнить предположение индукции.

Предположим, что вектор пройден от элемента 1 до элемента с номером i − 1 включительно. Мы знаем лучшую подпоследовательность в этой части: она идет от индекса r до индекса q включительно, и ее сумма равна m: m = S (r, q). С другой стороны, мы внаем наилучшую заключительную подпоследовательность, кончающуюся в i − 1, т. е. знаем такой индекс k, что сумма S (k, i − 1) максимальна среди заключительных подпоследовательностей, Значение суммы S (k, i − 1) равно s. Может случиться, что эта заключительная подпоследовательность является наилучшей возможной во всей пройденной части, и в этом случае имеем r = k, q = i − 1, s = m. В любом другом случае sm. Если i = n − 1, то весь вектор пройден и получен искомый результат r, q, m.

В противном случае нужно включить элемент a[i]. Если s отрицательно, то a[i] и образует (как единственный участник) наилучший заключительный отрезок; берем k = i, s = a[i]. В противном случае s ≥ 0 и сумма s + a[i] больше s и больше а[i], и это и есть сумма для наилучшего заключительного отрезка, который по-прежнему начинается с номера k. В этих двух случаях отрезок s становится наилучшим отрезком, если он оказывается больше m.

Для начала можно положиться на пробег вектора, начиная с его единственного первого элемента. В этот момент наилучший сегмент и наилучший заключительный сегмент — это одно и то же.

>d := 1; f := 1; m := a[1]; s := m; i := 2

>ПОКА in ВЫПОЛНЯТЬ

>  ЕСЛИ s < 0 ТО k := i; s := a[i]

>    ИНАЧЕ s := s + a[i]

>  КОНЕЦ_ЕСЛИ

>  ЕСЛИ s > m ТО d := k; f := i; m := s

>  КОНЕЦ_ЕСЛИ

>  i := i + 1

>ВЕРНУТЬСЯ

Эта программа осуществляет пробег вектора a один-единственный раз, что и было предписано в условии. Это очень просто, но это совершенно не очевидно.

Список литературы

Произведения, цитируемые в тексте

[ARS] Arsac J., Les bases de la programmation, Paris, Dunod, 1983.

[BAI] Baillif J.-C. Les casse — tète logiques de Baillif, Paris, Dunod, 1979.

[BAL] Ball W.-W. Rouse, Mathematical recreations and essays, Macmillan and C°, London, 1963.

[BER] Berloquin P., Le jardin du sphynx, Paris, Dunod, 1981.

[ENG] Engel A., Mathématique élémentaire dʼun point de vue algorithmique, Paris, Cedic, 1979.

[GRI] Gries D., The science of programming, Springer Verlag, New York, 1981.

[KNU] Knuth D., The art of computer programming, Addison Wesley, 1969.

[KUEJ Kuenzi N.-J., Prielipp B. Cryptarithms and other arithmetical pastimes, School science and mathematics association, University of Wisconsin.

[LED] Ledgard H.-F., Proverbes de programmation, Paris, Dunod, 1978.

[PBBJ Berlioux P., Bizard Ph., Algorithmique, Paris, Dunod, 1983.


Рекомендуем почитать
Изучаем Java EE 7

Java Enterprise Edition (Java EE) остается одной из ведущих технологий и платформ на основе Java. Данная книга представляет собой логичное пошаговое руководство, в котором подробно описаны многие спецификации и эталонные реализации Java EE 7. Работа с ними продемонстрирована на практических примерах. В этом фундаментальном издании также используется новейшая версия инструмента GlassFish, предназначенного для развертывания и администрирования примеров кода. Книга написана ведущим специалистом по обработке запросов на спецификацию Java EE, членом наблюдательного совета организации Java Community Process (JCP)


Геймдизайн. Рецепты успеха лучших компьютерных игр от Super Mario и Doom до Assassin’s Creed и дальше

Что такое ГЕЙМДИЗАЙН? Это не код, графика или звук. Это не создание персонажей или раскрашивание игрового поля. Геймдизайн – это симулятор мечты, набор правил, благодаря которым игра оживает. Как создать игру, которую полюбят, от которой не смогут оторваться? Знаменитый геймдизайнер Тайнан Сильвестр на примере кейсов из самых популярных игр рассказывает как объединить эмоции и впечатления, игровую механику и мотивацию игроков. Познакомитесь с принципами дизайна, которыми пользуются ведущие студии мира! Создайте игровую механику, вызывающую эмоции и обеспечивающую разнообразие.


Обработка событий в С++

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


MFC и OpenGL

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Симуляция частичной специализации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.