Примени математику - [4]

Шрифт
Интервал

Аналогично вместо умножения числа а на 99 или на 999 можно умножить его на 100 или на 1000 соответственно, а потом отнять само число а, например,

437*99 = 43 700 - 437 = 43 363, 437*999 = 437 000 - 437 = 436 563. В общем случае умножения на числа, близкие к степени десятки, поступаем аналогично, например,

437*997 = 437(1000-3) = 437 000 - 1311 = 435 689. 1.7. Так как

63 475 = 634*100 + 75 = 634*99 + 634 + 75 = 634*99 + 6*100 + 34 + 75 = 634*99 + 6*99 + 6 + 34 + 75 = 640*99 + 115 = 641*99 + 16, то частное от деления данного числа на 99 равно 641, а остаток 16. Так как

63 475 = 634*98 + 634*2 + 75 = 634*98 + 6*98*2 + 6*2*2 + 34*2 + 75 = 646*98 + 24 + 68 + 75 = 647*98 + 69, то частное от деления на 98 равно 647, а остаток 69. Так как

63 475 = 634*102 - 634*2 + 75 = 634*102 - 6*102*2 + 6*2*2 - 34*2 + 75 = 622*102 + 24 - 68 + 75 = 622*102 + 31, то частное от деления на 102 равно 622, а остаток 31.

1.8. Вместо умножения числа а на 5 можно, и это действительно проще, разделить его на 2 и умножить на 10, поскольку

Аналогично вместо деления числа а на 5 можно, наоборот, умножить его на 2 и разделить на 10, поскольку
Например, имеем

1275*5 = 637,5*10 = 6375, 1275:5 = 2550:10 = 255.1.9. Так как 25 = >100/>4, то справедливы формулы 25а = /4 *100 и />25 = >4а/>100 пользуясь которыми, например, получаем

786*25 = 78 600:4 = 19650, 786:25 = 4*7,86 = 31,44. Что же касается умножения и деления на 125, то здесь аналогично получаем формулы

правые части которых также реализуются в уме, например,

786*125 = 786 000:8 = 98 250, 786:125 = 8*0,786 = 6,288.1.10. Учитывая равенства


мы можем умножение произвольного числа на 2,5 заменить делением удесятеренного числа на 4, умножение на 1,25 - прибавлением четверти числа или делением удесятеренного числа на 8, умножением на 1,5 - прибавлением половины числа, умножение на 0,75 - вычитанием четверти числа. Так, справедливы выкладки

179*2,5 = 1790:4 = 447,5, 179*1,25 = 179 + 179:4 = 179 + 44,75 = 1790:8 = 223,75,179*1,5 = 179 + 179:2 = 179 + 89,5 = 268,5,179*0,75 = 179 - 179:4 = 179 - 44,75 = 134,25. Наконец, умножение на 15 и на 75 можно представить соответственно как умножение на 1,5 и на 0,75 с последующим умножением соответственно на 10 и на 100, например

34*15 = (34 + 17)10 = 510, 34*75 = (34 - 8,5)100 = 2550.1.11. При последовательном умножении числа на возрастающие степени двойки, т. е. при последовательном удвоении, можно фиксировать те числа, сумма или разность которых дает искомое произведение. Так, умножение числа 139 на 14 = 2>4 - 2>1 можно провести следующим образом:

139*14 = 139*2>4 - 139*2>1 = 2224 - 278 = 1946 (здесь, разумеется, использованы выкладки, приведенные в условии задачи). Аналогично умножение на 35 = 2>6 + 2>1 + 2>0 можно провести так:


139*35 = 139*2>6 + 139*2>1 - 139*2>0 = 4448 + 278 + 139 = 4865. 1.12. Деление на степень двойки можно провести в такой же последовательности, как умножение, описанное в формулировке задачи 1.11, но, естественно, с заменой операции умножения операцией деления, например,

139:32 = 69,5:16 = 34,75:8 = 17,375:4 = 8,6875:2 = 4,34375. 1.13. Пусть надо перемножить два числа вида 1a>- и 1b>-. Тогда имеем равенства

(10+а)(10+b) = 100 + 10а + 10b + ab = 10(а+b) + 100 + ab, которые подтверждают правильность предложенного в условии задачи способа.

1.14. Из равенства

(100-а) (100-b) = (100-а)100 - 100b + ab = 100 ((100-a)-b) + ab, где а и b - дополнения первого и второго сомножителя до 100 соответственно, вытекает правильность предложенного способа.

1.15. Ответ получен из верного равенства

(1000-а) (1000-b) = (1000-а)1000 - 1000b + ab = 1000 ((1000-a) - b) + ab при а = 13 и b = 4. Таким образом, для перемножения двух трехзначных чисел, близких к 1000, достаточно вычесть из одного числа дополнение второго до 1000 и, увеличив разность в 1000 раз, прибавить к ней произведение дополнений исходных чисел до 1000.

1.16. Пусть нужно перемножить числа 10а+b и 10а+с, удовлетворяющие условию b+с = 10. Тогда имеем

b>(10а+b)(10а+с) = 100а>2 + 10aс + 10bа + bс = 100а>2 + 10а(b+с) + bс = 100а>2 + 100а + bс = 100а(а+1) + bc, что и требовалось доказать.

1.17. Для возведения в квадрат числа, оканчивающегося на 5, достаточно отбросить у него последнюю цифру, а затем перемножить полученное число с числом, большим его на 1, и приписать к результату справа 25. Это правило является следствием равенства, доказанного в решении задачи 1.16, если в нем положить b = с = 5.

1.18. Пусть перемножаются числа 10а+5 и 106+5. Правильность предложенного способа вытекает из следующих равенств:


1.19. Произведение чисел а и b можно найти по формуле


удобной для применения в случае одновременной четности или одновременной нечетности сомножителей (в противном случае их полусумма и полуразность были бы нецелыми) и в случае, когда эти сомножители близки друг к другу.

1.20. Квадраты двух соседних чисел различаются на сумму этих чисел, поскольку имеют место равенства

(а+1)>2 - а>2 = 2а + 1 = (а+1) + а. Аналогично, если числа различаются на 2, то разность их квадратов

(a+2)>2 - а>2 = 4а + 4 = 4(а+1) = 2((а+2) + а) равна удвоенной сумме этих чисел. Так как любое целое число отличается от ближайшего числа, кратного 5, не более чем на 2, то, пользуясь указанными здесь соображениями, можно восстановить его квадрат, например,


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.