Примени математику - [3]

Шрифт
Интервал

1.21. Следующий куб Пусть вам известен куб некоторого числа. Как с его помощью проще найти куб следующего числа?

1.22. Квадрат числа, близкого к "круглому" Быстрому возведению в квадрат может способствовать умение перемножать в уме любые числа с некоторыми числами специального вида, например

192>2 = 200*184 + 8>2 = 36 864, 412>2 = 400*424 + 12>2 = 169 744. На каком приеме основаны вычисления квадратов в данных примерах?

1.23. Следующие 25 квадратов Если вы знаете квадраты всех чисел от 1 до 25, то вам нет никакой необходимости заучивать квадраты следующих 25 чисел. Для возведения в квадрат любого числа, заключенного между 25 и 50, достаточно отнять от него 25 и, увеличив результат в 100 раз, прибавить к нему квадрат дополнения этого числа до 50. Например, справедливы равенства

37>2 = (37-25)100 + (50-37)>2 = 1200 + 169 = 1369. Дайте обоснование предложенному способу.

1.24. Квадраты чисел, больших 50 Как изменить описанную в задаче 1.23 процедуру возведения в квадрат, чтобы она годилась и для двузначных чисел, больших 50?

1.25. Квадраты чисел, близких к 500 При возведении в квадрат числа 492 были проделаны вычисления

492>2 = (492-250)1000 + (500-492)>2 = 242 064. Убедитесь, что в результате найден верный ответ, и сформулируйте общее правило возведения в квадрат чисел, близких к 500 (сравните с задачами 1.23 и 1.24).

Решения


1.1. Имеет смысл сосчитать, сколько раз среди слагаемых встречаются в отдельной части числа 1, 2, 3, ..., 9. Если количества этих чисел скажутся соответственно равными n>1, n>2, n>3, ..., n>9, то искомая сумма будет равна 1*n>1 + 2*n>2 + 3*n>3 + ... + 9*n>9 и подсчет этой суммы можно будет произвести более экономно, а значит, с меньшей вероятностью ошибки.

1.2. Если чисел достаточно много, то среди них с большой вероятностью найдутся пары или тройки чисел, дающие в сумме целое число-десятков. Заменим такие группы чисел их суммами, а затем среди новых слагаемых выделим аналогично группы чисел, дающие в сумме целое число сотен. Действуя таким образом, мы сильно упростим работу по сложению исходных чисел. Например, складывая числа 17, 96, 72, 29, 93, 32, 87, 68, 84, 37, 13, 92, 55, 61, 45, 34, 73, 29, 20, 64, получаем

(17 + 93) + (96 + 84) + (72 + 68) + (29 + 61) + (87 + 13) + (37 + 73) + (55 + 45) + 20 + (32 + 34 + 64) + (92 + 29) = 100 + 180 + 140 + 90 + 100 + 110 + 100 + 20 + 130 + 120 + 1 = (110 + 90) + (180 + 20) + (100 + 100) + (140 + 110 + 130 + 120) + 1 = 200 + 200 + 200 + 500 + 1 = 1101. Попробуйте подсчитать сумму исходных чисел в том порядке, в каком они были записаны вначале, и вы убедитесь, насколько это трудоемкое и нудное занятие.

1.3. Приведенная на рис. 1, а запись есть не что иное, как запись поразрядного сложения многозначных чисел, отличающаяся от обычной тем, что в ней не требуется запоминать никаких цифр при переносе из одного разряда в другой. Так, при сложении цифр единиц всех слагаемых получается 20, что и записано в первой строке под чертой. При сложении цифр десятков всех слагаемых получается 34, что и записано в следующей строке (разумеется, не прямо под предыдущим числом, а со сдвигом на один разряд влево), и т. д.

На рис. 1, б приведена запись умножения чисел 345 и 578, в которой действия произведены в необычном порядке. Сначала перемножены цифры единиц и в первой строке записан результат 40. Затем перемножены последовательно такие пары цифр, которые дают число десятков произведения,- это пары 4, 8 и 5, 7 - и записаны результаты 32 и 35. Далее перемножены пары цифр, дающие число сотен, произведения, и т. д.

Наиболее труден для расшифровки, видимо, рис. 1, в, который отличается от предыдущего только тем, что в нем сложены и записаны в соответствующих местах числа единиц, десятков, сотен и т. д., полученные при умножении чисел 345 и 578. В первой строке под чертой записаны справа налево двузначное число единиц 40, затем двузначное число сотен 24 + 28 + 25 = 77 (заметьте, что именно сотен, а не десятков - в противном случае произошло бы неизбежное "наложение" одних чисел на другие, что повлекло бы за собой дополнительные трудности) и, наконец, двузначное число десятков тысяч 15. В следующей строке записаны аналогично двузначное число десятков 32+35=67 и двузначное число тысяч 21 + 20 = 41.

1.4. Пусть на левой руке загнуто a пальцев, а на правой - b пальцев. Тогда сами сомножители равны 5+a и 5+b соответственно, а их произведение равно

(5+a) (5+b) = 25+5а+5b+ab = 10а+10b+(25-5а-5b+ab) = 10 (а+b) + (5-а) (5-b), где 5-а и 5-b - как раз количества незагнутых пальцев на левой и правой руке соответственно. Таким образом, предложенный способ умножения на пальцах дает верный результат.

1.5. При умножении однозначного числа а на 9 предложенным способом мы получаем, что слева от а-го (поднятого) пальца находится а - 1 пальцев, а справа 10 - а пальцев, т. е. искомое произведение равно

10 (а - 1) + (10 - а) = 10а - 10 + 10 - а = 9а, что и требовалось объяснить.

1.6. Так как 9а = 10а-а, то для умножения числа а на 9 достаточно от увеличенного в 10 раз числа а отнять само число а. Например, при а = 437 имеем

437*9 = 4370-437 = 3933.


Рекомендуем почитать
Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Время переменных. Математический анализ в безумном мире

«Время переменных» – веселая книга о математике вокруг нас. Двадцать восемь увлекательных рассказов, посвященных разным аспектам математики, сопровождаются забавными авторскими рисунками. Математический анализ для Орлина – это универсальный язык, способный выразить все, с чем мы сталкиваемся каждый день, – любовь, риск, время и, самое главное, постоянные изменения. Тема движения времени находит отражение и в названиях частей книги – «Мгновения» и «Вечности», и в ее персонажах – от Шерлока Холмса до Марка Твена и Дэвида Фостера Уоллеса.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.