Поиск неисправностей в электронике - [94]

Шрифт
Интервал

, переводит язык высокого уровня в машинный (двоичные 1 и 0). В любом случае информация, которая будет проходить по шинам, представляет собой только двоичные 1 и 0, образующие машинный код.


Машинные циклы и синхронизация

Для запуска программы ЦПУ задает стартовый адрес, который показывает, где расположена первая инструкция программного кода. Точное время выполнения любой инструкции зависит от быстродействия микропроцессора, которые, независимо от типа, выполняют цикл выбор-исполнение для каждой инструкции. Новейшие процессоры выбирают нескольких инструкций и выстраивают их в виде очереди на исполнение. Это положительно влияет на эффективность и повышает быстродействие. В следующем описании указаны основные этапы выполнения машинных инструкций, что позволяет составить общее представление о работе компьютеров. Детали, касающиеся конкретного микропроцессора, можно найти в руководствах изготовителей.

Цикл выполнения любой инструкции начинается с помещения адреса ячейки в памяти, но которому расположен код следующей инструкции, на шину адреса. Дешифраторы адреса выбирают ИС, в которой находится адрес. Когда ЦПУ готов принять код операции, он активирует управляющую шину, подавая сигнал типа RD (чтение), который запускает выходные буферы схемы памяти с тремя состояниями, и на шину подается код операции. Когда импульс RD заканчивается, код операции запоминается в регистре инструкций внутри ЦПУ.

Система синхронизации и управления декодирует инструкцию и определяет, требует ли она операндов. Если да, то они выбираются из следующих ячеек памяти таким же образом, что и код операции. Когда все части инструкции переданы в ЦПУ, начинается выполнение инструкции: считывание величины из памяти или устройства ввода-вывода, инкрементирование величины во внутреннем регистре или запись величины из ЦПУ в память или выходной порт. Важно понимать, что в разные периоды во время выполнения цикла инструкции шина данных может содержать коды инструкций, информацию об адресе, величины данных, и иногда ничего не значащий «цифровой мусор». Для анализа имеющихся сигналов необходимо очень хорошо понимать синхронизацию микропроцессора. Для описания этого достаточно сложного процесса в 8 и 16-битовых шинах используются специальные временные диаграммы (рис. 9.6).



Рис. 9.6.Временная диаграмма шины микропроцессора


 Вся 16-битовая шина адреса представлена на временной диаграмме одной линией. Участки, где линии параллельны, показывают, что состояние каждой из 16-ти адресных линий не изменяется. Реальная величина может быть показана в шестнадцатеричном виде в пространстве между двумя параллельными линиями. Место, где линии пересекаются на временной диаграмме, показывают, что один или более бит на этой шине изменили состояние, и на выход подается новая величина.


Шина данных образована восемью отдельными линиями, каждая из которых может иметь высокий, низкий или переменный уровень. Переменное состояние возникает тогда, когда все подключенные к шине приборы находятся в третьем состоянии с высоким импедансом (бездействуют). Это состояние с высоким импедансом представляется горизонтальной линией на среднем уровне между высоким и низким. Когда выходы включаются, временная диаграмма расширяется, показывая, что все 8 бит стабильны и имеют уровень высокий или низкий. Их величина в этом интервале может быть показана в виде шестнадцатеричного числа. Сигналы дешифратора ПЗУ и ОЗУ, которые идут к входам выбора ИМС, и сигналы линий RD и WD представляют собой однобитовые сигналы и выглядят, как и на всех остальных временных диаграммах.

Последовательность, которая представлена на временной диаграмме, следу-

1. ЦПУ выдает адрес ячейки памяти, содержащей операционный код инструкции.

2. Выход ПЗУ дешифратора адреса переходит на низкий уровень.

3. ЦПУ переводит линию RD на низкий уровень, разрешая выход схемы памяти.

4. Код операции от ПЗУ появляется на шине данных.

5. Кончается импульс RD, код инструкции запоминается в ЦПУ. ЦПУ теперь знает, что оно должен записать величину данных в указанный адрес ОЗУ.

6. Адрес ячейки памяти, куда должны быть записаны данные, выдается на шину адреса.

7. Дешифратор адреса активирует вход выбора RAM.

8. Данные для записи подаются ЦПУ на шину данных.

9. Линия WR переходит на НИЗКИЙ уровень при прохождении по ней импульса.

10. По фронту нарастания на линии WR данные записываются в память.

Теперь инструкция полностью выполнена и микропроцессор готов выбрать следующую.


Персональные компьютеры

Наиболее известной областью применения микропроцессоров дома и в офисах на сегодняшний день являются, видимо, персональные компьютеры, которые появились в 1970 году и в настоящее время стали обычными бытовыми приборами в каждом доме. Несколько изготовителей вышли на рынок за это время, но мы здесь остановимся на машинах, ориентированных на MS-DOS и Microsoft Windows, где прогресс просто поразительный.

Первые персональные компьютеры IBM использовали микропроцессор 8088 с шиной данных 8 бит и возможностью обработки 16 бит. Выпускаемый в настоящее время Pentium имеет полную шину данных 64 бит.


Рекомендуем почитать
Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Современная архитектура Японии. Традиции восприятия пространства

Япония отличается особым отношением к традиционным ценностям своей культуры. Понимание механизмов актуализации и развития традиций, которыми пользуется Япония, может открыть новые способы сохранения устойчивости культуры, что становится в настоящее время все более актуальной проблемой для многих стран мира. В качестве центральных категорий, составляющих основу пространственного восприятия архитектуры в Японии, выделяется триада: пустота, промежуток, тень. Эти категории можно считать инвариантами культуры этой страны, т. к.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.


6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.


В помощь радиолюбителю. Выпуск 8

В данном выпуске приведены краткие описания и принципиальные схемы конструкций, ранее опубликованных в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.


В помощь радиолюбителю. Выпуск 9

В данном выпуске приведены краткие описания и принципиальные схемы конструкций, ранее опубликованных в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.


Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности

Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок.Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы, узнаете секреты многих профессиональных радиолюбителей.


В помощь радиолюбителю. Выпуск 10

В этой книге приведены краткие описания и принципиальные схемы конструкций, ранее опубликованные в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.