Поиск неисправностей в электронике - [92]

Шрифт
Интервал

Так как ошибки возникают часто, то с учетом дальнейшего усовершенствования программного обеспечения обычно используется программируемая постоянная память. Приборы с ультрафиолетовым стиранием имеют кварцевое окно, которое позволяет свету попадать на кремниевую пластину с ячейками памяти внутри корпуса интегральной схемы. Если эта пластина подвергается воздействию высокоинтенсивного ультрафиолетового света в течение нескольких минут, содержимое всех заполненных ячеек памяти будет стерто (установлено в положение логической единицы). Для перепрограммирования микросхемы используется специальная программа, как было указано выше.

Стираемая программируемая постоянная память позволяет уничтожать содержимое памяти и заново программировать ее. Прибор можно запрограммировать, при этом схема обеспечивает хранение информации в течение многих лет. Данные можно изменить только с помощью аппаратно-программного обеспечения. Неизменное хранение означает, что при выключении компьютера содержимое памяти не исчезнет. Все приборы памяти типа «только для чтения», описанные здесь, обладают характеристикой неизменности.

Во многих компьютерных приложениях нередко хранят весьма значительное количество информации, которую необходимо регулярно изменять. Центральный процессор должен иметь возможность записывать данные, а также считывать их. Для этого нужно, чтобы регистры состояли из триггеров с защелкой, а не из плавких элементов, которые были описаны для постоянной памяти. Эти схемы памяти обычно называются памятью с произвольным доступом. Их характеристики таковы: могут быстро записывать и выводить информацию, но требуют постоянного питания для сохранения данных. Если устройство выключается, информация будет потеряна. Обратите внимание, что схема программируемой памяти может хранить и находить данные, но цикл хранения относительно длинный. Потеря питания не означает потери информации.

Большинство встроенных контроллеров в настоящее время использует микросхемы с возможностью чтения и записи, которые называются статической памятью с произвольным доступом. Статическая память с произвольным доступом хранит каждый бит информации в триггере. Большинство крупных микрокомпьютерных систем, которые требуют значительного количества памяти с чтением и записью, такие как персональные компьютеры, используют динамическую память с произвольным доступом, которая позволяет хранить каждый бит информации в конденсаторе. Идеальный конденсатор с нулевым током утечки изготовить невозможно, поэтому конденсаторы, которые хранят данные, должны периодически подзаряжаться. Этот процесс называется обновлением памяти.

Динамическая память может быть изготовлена с большим количеством битов по сравнению со статической и в меньшем корпусе, поскольку конденсатор занимает меньше места, чем триггер. Динамическая память также потребляет меньше энергии и дешевле в производстве. Недостаток се заключается в том, что она требует более сложных схем для организации цикла обновления приблизительно каждую миллисекунду.

Каждая микросхема памяти организованна определенным образом. Эта информация всегда указывается в виде общего количества ячеек запоминания (со своим адресом), а также общего количества бит, которые могут храниться по этому адресу (длина слова). Поскольку устройство памяти часто содержит много ячеек хранения, это помогает указать общее количество адресов в несколько тысяч ячеек. Поскольку десятичная тысяча не является степенью числа 2, основной единицей измерения объема бит является 2>10 или 1024 килобит — сокращенно 1К). Например, микросхема статической памяти с произвольным доступом, показанная на рис. 9.4, имеет организацию 8Кх8. Общее количество элементов хранения составляет:

8 х 1024 = 8192

Число бит в каждом элементе хранения 8. Обратите внимание, что микросхема имеет 13 адресных шин. Просто подсчитав число выводов адресов, мы можем определить общее количество ячеек памяти, составляющее 2>13 = 8192.

Обратите также внимание, что микросхема имеет 8 линий данных. Это говорит о том, что в заданную на адресной шине ячейку памяти могут быть одновременно записаны (или считаны из нее) 8 бит данных. Линия WE (разрешение записи) активируется для записи данных. Линия ОЕ (разрешение выхода) активируется для чтения данных. Две линии CS (выбор ИМС) должны быть активированы (одна активируется высоким уровнем, другая низким) для выбора режима работы данной ИМС. Эти входы могут помочь при определении адреса, как будет показано ниже.



Рис. 9.4. ИС статического ОЗУ 8Кх8


Устройства ввода/вывода

Третьей составной частью компьютерной системы является блок ввода/вывода (см. рис. 9.1). Любой компьютер будет бесполезен, если вы не можете обрабатывать данные. Наиболее распространенным для персональных компьютеров устройством ввода является клавиатура, а устройством вывода — экран ЭЛТ.

Большинство компьютеров изготавливаются со стандартным портом LPT для принтера (вывод) и последовательным COM-портом (ввод и вывод). Накопители (CD, дискеты, флэш-карты и т. д.) также представляют собой устройства ввода/вывода, которые позволяют осуществлять перенос и обмен данными между компьютерами.


Рекомендуем почитать
Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Современная архитектура Японии. Традиции восприятия пространства

Япония отличается особым отношением к традиционным ценностям своей культуры. Понимание механизмов актуализации и развития традиций, которыми пользуется Япония, может открыть новые способы сохранения устойчивости культуры, что становится в настоящее время все более актуальной проблемой для многих стран мира. В качестве центральных категорий, составляющих основу пространственного восприятия архитектуры в Японии, выделяется триада: пустота, промежуток, тень. Эти категории можно считать инвариантами культуры этой страны, т. к.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.


6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.


В помощь радиолюбителю. Выпуск 8

В данном выпуске приведены краткие описания и принципиальные схемы конструкций, ранее опубликованных в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.


В помощь радиолюбителю. Выпуск 9

В данном выпуске приведены краткие описания и принципиальные схемы конструкций, ранее опубликованных в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.


Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности

Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок.Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы, узнаете секреты многих профессиональных радиолюбителей.


В помощь радиолюбителю. Выпуск 10

В этой книге приведены краткие описания и принципиальные схемы конструкций, ранее опубликованные в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.