По ту сторону кванта - [43]
Наступило лето. В июне заболевший Гейзенберг уехал отдохнуть на остров Гельголанд в Балтийском море. Отдохнуть ему не удалось — там он вдруг понял неожиданную истину: нельзя представлять себе движение электрона в атоме как движение маленького шарика по траектории. Нельзя, потому что электрон не шарик, а нечто более сложное, и проследить движение этого «нечто» столь же просто, как движение бильярдного шара, нельзя. И если эта догадка верна, то, пытаясь проследить траекторию электрона в атоме, мы задаем природе незаконные вопросы вроде тех, которые задавали в древности: «На чем держится Земля?», «Где у нее край?» А немного позднее: «Где у нее верх и низ?»
Гейзенберг утверждал: уравнения, с помощью которых мы хотим описать движение в атоме, не должны содержать никаких величин, кроме тех, которые можно измерить на опыте. А из опытов следовало, что атом устойчив, состоит из ядра и электронов и может испускать лучи, если его вывести из состояния равновесия. Эти лучи имеют строго определенную длину волны и, если верить Бору, возникают при перескоке электрона с одной стационарной орбиты на другую. При этом схема Бора ничего не говорила о том, что происходит с электроном в момент скачка, так сказать «в полете» между двумя стационарными состояниями. А все, и Гейзенберг в том числе, по привычке добивались ответа именно на этот вопрос. Но в какой-то момент ему стало ясно: электрон не бывает «между» стационарными состояниями, такого свойства у него просто нет!
А что есть? Есть нечто, чему он не знал пока даже названия, но был убежден: оно должно зависеть только от того, куда перешел электрон и откуда.
До сих пор, исходя из уравнений электродинамики, все пытались найти гипотетическую траекторию электрона в атоме, которая непрерывно зависит от времени и которую можно задать рядом чисел х>1, х>2, х>3…, отмечающих положение электрона в моменты времени t>1, t>2, t>3. Гейзенберг утверждал: такой траектории в атоме нет, а вместо непрерывной кривой X(t) есть набор дискретных чисел X>nk, значения которых зависят от номеров n и k начального и конечного состояний электрона.
Это важное и довольно сложное утверждение можно пояснить простой аналогией. Представьте, что перед вами шахматная доска, по которой ползет муха. При желании можно очень подробно проследить ее путь, если в каждый момент времени t отмечать ее положение х. По этим измерениям вы затем легко сможете начертить кривую X(t), то есть траекторию движения мухи. Если у вас нет такого желания, то вы можете ограничиться только указанием квадратов, которые посетила муха на своем пути. Это тоже даст некую информацию о ее перемещении, но легко сообразить, что с точки зрения классической механики такое описание будет неполным.
Теперь представьте, что вы за той же доской играете в шахматы и решили, например, сделать традиционный ход е2—е4. В этом случае результат вашего хода совершенно не зависит от того, по какому пути вы передвинули пешку. Это и понятно: правила шахматной игры не зависят от законов механики, а потому и не нуждаются в понятии траектории.
Гейзенберг сообразил, что «правила атомной игры» тоже не требуют знания траектории. В соответствии с этим ой представил состояние атома в виде бесконечной шахматной доски, в каждом квадрате которой написаны числа X>nk. Естественно, что значения этих чисел зависят от положения квадрата на «атомной доске», то есть от номера n строки (начальное состояние) и номера столбца k (конечное состояние), на пересечении которых стоит число X>nk.
Никого не удивляет тот факт, что запись шахматной партии позволяет повторить ее даже много лет спустя. Конечно, при этом мы не узнаем, как долго она длилась в действительности, что переживали при этом шахматисты и как именно двигали они пешки и фигуры. Но это и неважно, коль скоро нам интересна только игра сама по себе.
Точно так же, если нам известны числа X>nk — эта своеобразная запись «атомной игры», — мы знаем об атоме все необходимое, чтобы предсказать его наблюдаемые свойства: спектр атома, интенсивность его спектральных линий, число и скорость электронов, выбитых из атома ультрафиолетовыми лучами, а также многое другое.
Числа X>nk нельзя назвать координатами электрона в атоме. Они заменяют их, или, как стали говорить позже, представляют их. Но что означают эти слова — на первых порах не понимал и сам Гейзенберг.
Действительно, вместо таблицы чисел {Х>nk} с таким же успехом можно нарисовать все, что угодно, скажем цветок, и сказать, что именно он представляет движение электрона в атоме. Однако тут же с помощью Макса Борна (1882–1970) и Паскуаля Иордана удалось понять, что таблица чисел {Х>nk} не просто таблица, а матрица.
Что означает это слово? Математика имеет дело с величинами и символами, и каждый символ в ней подчиняется своим правилам действия. Например, простые числа можно складывать и вычитать, умножать и делить, и результат этих действий не зависит от того, в каком порядке мы эти действия производим: 5 + 3 = 3 + 5 и 5 3 = 3 • 5.
Но в математике есть и более сложные объекты: отрицательные и комплексные числа, матрицы и т. д. Матрицы — это таблицы величин типа {X
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.