По ту сторону кванта - [42]
Траектория движения частицы задана, если в каждый момент времени t мы можем указать положение частицы — ее координаты х — в пространстве. Нужно только либо измерить координаты х в моменты времени t, либо вычислить их. Первую задачу решает экспериментальная физика, вторую — теоретическая. Однако вторую задачу можно решить лишь в том случае, если известны физические законы, по которым частица движется.
Что есть физический закон? Это постоянная связь явлений и величин, записанная с помощью математических символов в виде уравнений. Для каждой группы явлений существуют свои законы движения: в механике — одни законы (уравнения Ньютона), в электродинамике — другие (уравнения Максвелла). А все вместе взятое в совокупности: понятия, физические законы, формулы, их выражающие, и следствия из них — принято называть точной наукой.
Каждая законченная наука должна быть логически непротиворечива. Это означает, в частности, что каждое понятие в рамках этой науки можно употреблять только в одном строго определенном смысле. Добиться этого трудно, но необходимо, поскольку ученые, как и все люди, общаются между собой не формулами, а с помощью слов. Формулы нужны им лишь для однозначной записи результатов исследований.
Примером логически завершенной науки долгое время служила механика, которую за ее совершенство назвали классической. Механика — это наука о движении тел. Ее законам подчиняются почти все видимые движения в природе — будь то порхание мотылька или полет планет. Классическое совершенство механики долгое время гипнотизировало ученых, и они пытались объяснить с ее помощью не только механические, но и все другие движения в природе.
«Все единодушно признают, что задачей физики является подведение всех явлений природы под простые законы механики», — писал Генрих Герц даже в 1894 году, на пороге революции в физике.
Движение — одно из самых сложных понятий физики. С ним воображению вольно связывать любые образы — от шелеста листьев до бегущего носорога. Однако даже самые фантастические картины движения, доступные нашему воображению, содержат нечто общее: перемещение одних объектов относительно других с течением времени. После введения понятия траектории понятие движения становится более определенным — вероятно, потому, что при этом оно вновь приобретает черты наглядности. Только теперь эта наглядность особого сорта: возникающий образ никак не похож на мотылька или носорога. И все же наглядность, связанная с понятием траектории, опасна. Действительно, частое повторение словосочетания «траектория движения» приводит к тому, что оба понятия просто перестают различать, хотя совпадают они только для одного вида движений — механических. Но поскольку условия развития и воспитания человека таковы, что ему трудно вообразить иное движение, кроме механического, то и все другие виды движения он пытается осмыслить также с помощью понятия траектории. Это ему, естественно, не удается, например, при попытке осмыслить электрические движения. Можно, конечно, представить себе высоковольтную линию передачи или междугородный телефон и вообразить, что провода и есть «траектории» электрических сигналов, однако реального смысла такие образы не имеют: волны электрических сигналов не жидкость, текущая по проводам.
Определить понятие движения в квантовой механике еще сложнее. Более того: именно тот день, когда это понятие удалось определить непротиворечиво, можно считать днем рождения современной квантовой механики.
АТОМНАЯ МЕХАНИКА ГЕЙЗЕНБЕРГА
Когда прошел восторг первых успехов теории Бора, i все вдруг трезво осознали простую истину: схема Бора противоречива. От такого факта некуда было укрыться, и им объясняется тогдашний пессимизм Эйнштейна, равно как и отчаяние Паули.
Физики вновь и вновь убеждались, что электрон при движении в атоме не подчиняется законам электродинамики: он не падает на ядро и даже не излучает, если атом не возбужден. Все это было настолько необычно, что не укладывалось в голове: электрон, который «произошел» от электродинамики, вдруг вышел из-под контроля ее законов. При любой попытке найти логический выход из подобного порочного круга ученые всегда приходили к выводу: атом Бора существовать не может.
Однако природе нет дела до наших логических построений: атомы вопреки всякой логике устойчивы и, насколько мы знаем, существуют вечно. А если законы электродинамики не могут обеспечить устойчивость атома, тем хуже для них, значит, движение электрона в атоме подчиняется каким-то другим законам.
Впоследствии оказалось, что постулаты Бора — это удачная догадка о тогда еще неизвестных, но фундаментальных законах, которые чуть позже назовут законами квантовой механики.
Квантовая механика — это наука о движении электронов в атоме. Она первоначально так и называлась: атомная механика. А Вернер Карл Гейзенберг — первый из тех, кому выпало счастье эту науку создавать.
Весной 1925 года по приглашению Бора Гейзенберг приехал в Копенгаген из Мюнхена, где только что закончил университет под руководством Зоммерфельда. В Дании он сразу же попал в обстановку научных споров, в среду людей, для которых физика стала главным делом жизни. Полгода прошли в работе и бесконечных дискуссиях все о том же: почему электрон — объект электродинамики — не подчиняется ее законам в атоме и в чем причина удивительной силы нелогичных постулатов Бора? Наконец, что означает в этом случае само понятие «движение»?
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.